
Feature Extraction and Image Processing in Computer Vision

 72

3.4 Group Operations

3.4.1 Template Convolution

Group operations calculate new pixel values from a pixel’s neighbourhood by using a ‘grouping’

process. The group operation is usually expressed in terms of template convolution where the

template is a set of weighting coefficients. The template is usually square, and its size is usually

odd to ensure that the result positioned precisely on a pixel. The size is usually used to describe the

template; a 33 template is three pixels wide by three pixels long. New pixel values are calculated

by placing the template at the point of interest. Pixel values are multiplied by the corresponding

weighting coefficient and added to an overall sum. The sum (usually) evaluates a new value for the

centre pixel (where the template is centred) and this becomes the pixel in the output image. If the

template’s position has not yet reached the end of a line, the template is then moved horizontally

by one pixel and the process repeats.

Figure 3.11 Template Convolution Process

This is illustrated in Figure 3.11 where a new image is calculated from an original one, by template

convolution. The calculation obtained by template convolution at the centre pixel of the template

in the original image becomes the point in the output result image. Since the template cannot extend

beyond the original image, a new value cannot be computed for points at the border of the result

image. When the template reaches the end of a line, it is repositioned to proceed from the start of

the next line. The process is shown part way through the raster scan, the next pixel to be calculated

would be derived from the nine points to the right of the current position of the centre point of the

template, and stored to the right of the point containing -7. For a 33 neighbourhood, Figure 3.12,

nine weighting coefficients wt are applied to points in the original image to calculate a point in the

new image. The position of the new point (at the centre) is shaded in the template.

Basic Operations

 73

 w0 w1 w2

 w3 w4 w5

 w6 w7 w8

Figure 3.12 3 3 Template and Weighting Coefficients

To calculate the value in new image, N, at point with co-ordinates x,y, the template in Figure

3.12 operates on an original image O according to:

, , (), ()

template template

x y i j x i y j

i j

w
 

  N O (3.1)

where the coordinates of the image point (), ()x i y j denote the position of the point that matches

the weighting coefficient position. Note that we cannot ascribe values to the picture’s borders. This

is because when we place the template at the border, parts of the template fall outside the image

and have no information from which to calculate the new pixel value. The width of the border

equals half the size of the template. In Figure 3.11 the single pixel border points have been left

blank. To calculate values for the border pixels, we have three choices:

1. set the border to black (or deliver a smaller picture);

2. assume (as in Fourier) that the image replicates to infinity along both dimensions and

calculate new values by cyclic shift from the far border; or

3. calculate the border pixel value from a smaller area.

None of these approaches is optimal. The results in this book use the first option and set border

pixels to black. Note that in many applications the object of interest is imaged centrally or, at least,

imaged within the picture. As such, the border information is of little consequence to the remainder

of the process. Here, the border points are set to black, by starting functions with a zero function

which sets all the points in the picture initially to black (0).

An alternative representation for this process is given by using the convolution notation as

 OWN  (3.2)

where N is the new image which results from convolving the template W (of weighting coefficients)

with the image O.

The Matlab implementation of a template convolution operator template_convolve is given

in Code 3.1. This function accepts, as arguments, the picture image and the template to be

convolved with it, template. The result of template convolution is an image convolved. The

operator first sets the resulting image to black (zero brightness levels). The widths tc and tr give

the range of picture points to be processed in the outer for loops that give the co-ordinates of all

points resulting from template convolution. The template is convolved at each picture point by

generating a running summation of the pixel values within the template’s window multiplied by the

respective template weighting coefficient.

Note that according to Eqn. 2.10, for convolution one of the signals is inverted along its principal

axis. For images, convolution requires inversion along both axes which is why the template’s

arguments are inverted in Code 3.1. We shall consider convolution again in the next Section, via

the frequency domain, and in Section 5.3.2.

Feature Extraction and Image Processing in Computer Vision

 74

function convolved = template_convolve(image,template)

%get image dimensions

[rows,cols]=size(image);

%get template dimensions

[trows,tcols]=size(template);

%half of template rows is

tr=floor(trows/2);

%half of template cols is

tc=floor(tcols/2);

%set an output as black

convolved(1:rows,1:cols)=0;

%then convolve the template

for x = tc+1:cols-tc %address all columns except border
 for y = tr+1:rows-tr %address all rows except border
 sum=0; %initialise the sum
 for iwin=1:tcols %address all points in the template
 for jwin=1:trows
 sum=sum+image(y+jwin-tr-1,x+iwin-tc-1)*... % sum, Eq. 3.18
 template(trows-jwin+1,tcols-iwin+1);
 end
 end
 convolved(y,x)=sum; %store as new point
 end
end

Code 3.1 Template Convolution Operator

Template convolution can of course be implemented in hardware and requires a two-line store,

together with some further latches, for the (input) video data. The output is the result of template

convolution, summing the result of multiplying weighting coefficients by pixel values. This is

called pipelining, since the pixels are essentially move along a pipeline of information. Note that

two line-stores can be used if the video fields only are processed. To process a full frame, one of

the fields must be stored if it is presented in interlaced format. Processing can be analog, using

operational amplifier circuits and Charge Coupled Device (CCD) for storage along bucket brigade

delay lines. Finally, an alternative implementation is to use a parallel architecture: for Multiple

Instruction Multiple Data (MIMD) architectures, the picture can be split into blocks (spatial

partitioning); Single Instruction Multiple Data (SIMD) architectures can implement template

convolution as a combination of shift and add instructions.

 1/9 1/9 1/9

 1/9 1/9 1/9

 1/9 1/9 1/9

Figure 3.12 33 Averaging Operator Template Coefficients

3.4.2 Averaging Operator

For an averaging operator, the template weighting functions are unity (or 1/9 to ensure that the

result of averaging nine white pixels is white, not more than white!). The template for a 33

Basic Operations

 75

averaging operator, implementing Equation 3.1, is given by the template in Figure 3.13 where the

location of the point of interest is again shaded. The averaging operator is then

 , (), ()

1
x y x i y j

i M j NMN  

 N O (3.3)

where (), ()x i y j are the coordinates of image points within the template and M, N are the numbers

of columns and rows in the template. The result of averaging an image with a 9 9 operator is

shown in Figure 3.14. This shows that much of the detail has now disappeared revealing the broad

image structure. In order to implement averaging by using the template convolution operator, we

need to define a template and then convolve it with the image (note also that there is an averaging

operator mean in Matlab that can be used for this purpose).

(a) original (b) after averaging

Figure 3.14 Applying Direct Averaging

The effect of averaging is to reduce noise, this is its advantage. An associated disadvantage is that

averaging causes blurring which reduces detail in an image. It is also a low pass filter since its effect

is to allow low spatial frequencies to be retained, and to suppress high frequency components. A

larger template, say 9 9 or 15 15 , will remove more noise (high frequencies) but reduce the

level of detail. The size of an averaging operator is then equivalent to the reciprocal of the

bandwidth of a low-pass filter it implements

3.4.3 On Different Template Size

Templates can be larger than 33 . Since they are usually centred on a point of interest, to produce

a new output value at that point, they are usually of odd dimension. For reasons of speed, the most

common sizes are 33 , 55 and 77 . Beyond this, say 99 , many template points are used to

calculate a single value for a new point, and this imposes high computational cost, especially for

large images. (For example, a 99 operator covers 9 times more points than a 33 operator.)

Square templates have the same properties along both image axes. Some implementations use

vector templates (a line), either because their properties are desirable in a particular application, or

for reasons of speed.

The effect of larger averaging operators is to smooth the image more, to remove more detail

whilst giving greater emphasis to the large structures. This is illustrated in Figure 3.15. A 55

operator, Figure 3.15 (a), retains more detail than a 77 operator, Figure 3.15 (b), and much more

than a 99 operator, Figure 3.15 (c). Conversely, the 99 operator retains only the largest

structures such as the eye region (and virtually removing the iris) whereas this is retained more by

the operators of smaller size. Note that the larger operators leave a larger border (since new values

Feature Extraction and Image Processing in Computer Vision

 76

cannot be computed in that region) and this can be seen in the increase in border size for the larger

operators, in Figures 3.15 (b) and (c).

(a) 55 (b) 77 (c) 99

Figure 3.15 Illustrating the Effect of Window Size

image_eye=imread('eye_orig.jpg');

image_eye=double(image_eye(:,:,1));

image_transform=fft2(image_eye);

template_transform=fft2(pad(image_eye, ave_template(7)));

inverted_transform=ifft2(rearrange(image_transform.*template_transform));

The transform based implementation of direct averaging can be combined as

averaged_image=ifft2(rearrange(fft2(eye).*fft2(pad(eye,ave_template(7)))));

(a) Matlab
Padding

widthPad, heightPad = width+kernelSize-1, height+kernelSize-1

templatePadFlip = createImageF(widthPad, heightPad)

for x,y in itertools.product(range(0, kernelSize), range(0, kernelSize)):

 templatePadFlip[y, x] = kernelImage[kernelSize-y-1, kernelSize-x-1]

Compute coefficients

imageCoeff, maxFrequencyW, maxFrequencyH = computeCoefficients(inputPad)

templateCoeff, _, _ = computeCoefficients(templatePadFlip)

Frequency domain multiplication

for kw,kh in itertools.product(range(-maxFrequencyW, maxFrequencyW + 1), \

 range(-maxFrequencyH, maxFrequencyH + 1)):

 w = kw + maxFrequencyW

 h = kh + maxFrequencyH

 resultCoeff[h,w][0] = (imageCoeff[h,w][0] * templateCoeff[h,w][0] - \

 imageCoeff[h,w][1] * templateCoeff[h,w][1])

 resultCoeff[h,w][1] = (imageCoeff[h,w][1] * templateCoeff[h,w][0] + \

 imageCoeff[h,w][0] * templateCoeff[h,w][1])

(b) Python

Code 3.2 Template Convolution via the Fourier Transform

3.4.4 Template Convolution via the Fourier Transform

The Fourier transform actually gives an alternative method to implement template convolution and

to speed it up, for larger templates. The question to be answered here is ‘how big?’. In Fourier

transforms, the process that is dual to convolution is multiplication (as in Section 2.3). So template

Basic Operations

 77

convolution (denoted ) can be implemented by multiplying the Fourier transform of the template

  T with the Fourier transform of the picture,   P , to which the template is to be applied. It is

perhaps a bit confusing that we appear to be multiplying matrices, but the multiplication is point-

by-point in that the result at each point is that of multiplying the (single) points at the same positions

in the two matrices. The result needs to be inverse transformed to return to the picture domain.

     1 .    P T P T (3.4)

The transform of the template and the picture need to be the same size before we can perform

the point by point multiplication (.). Accordingly, the image containing the template is zero-

padded prior to its transform which simply means that zeroes are added to the template which lead

to a template of the same size as the image. The process is illustrated in Code 3.2(a) and starts by

calculation of the transforms of the image and of the zero-padded template. Then, the transform of

the template is multiplied by the transform of the picture point-by-point (using the .* operator).

(Theoretical study of this process is presented in Section 5.3.2 where we show how the same process

can be used to find shapes in images.) Finally, the inverse Fourier transform is used to deliver the

result. Code 3.2(b) shows an implementation in Python. This code computes the summation

defining the Fourier transform by performing an iteration. First, the template is flipped and padded.

Afterwards, the coefficients are obtained by performing the multiplication of the complex numbers

of the image and of the template coefficients.

Code 3.2 is simply a different implementation of direct averaging. It achieves a similar result,

but by transform domain calculus. The operation is shown in Figure 3.16: an image of the eye (a)

is transformed to give (d); the averaging template is padded to the same size as the image (b) and

transformed (e); the multiplied transforms (f) are inverse transformed to give an averaged version

of the eye (c). There is one major difference between the Fourier and the direct implementations:

the borders of the images differ (where the border is of width equal to one half of the template’s

width). This is because for direct averaging the border points are set to zero whereas in the Fourier

implementation the image is assumed to replicate to infinity, as in Equation 2.26. (The rearrange

function, Equation 2.30, is used since the padding function places the template at the centre of the

image). Note that the template transform is a 2D sinc function viewed as an image and that the

logarithm of the magnitude (Section 3.3.1) has been used to display all transforms.

(a) image of eye (b) padded averaging

template

(c) resulting averaged

image

(d) image transform (e) template transform (f) multiplied transforms

Figure 3.16 Template Convolution via Fourier Transform

