
	COMP3204/COMP6223	Computer	Vision	

Image	search	and	Bag	of	Visual	Words	

Summary	
Content-based	image	retrieval	(CBIR)	is	the	name	given	to	systems	that	can	search	for	images	with	an	
image	as	the	query.	 Research	on	CBIR	 systems	 started	 in	 the	 early	90’s,	 but	 it	 is	 only	more	 recently	
with	 ubiquitous	 mobile	 computing	 and	 applications	 like	 Google	 Goggles	 that	 the	 technology	 has	
matured.	In	previous	lectures,	we’ve	seen	how	(local)	descriptors	can	be	used	to	find	matching	objects	
within	images,	but	we’ve	also	seen	that	the	matching	process	is	rather	computationally	expensive.	For	
CBIR	applications	we	need	to	be	able	to	search	datasets	of	millions	of	images	almost	instantaneously.	
In	the	field	of	textual	document	search,	techniques	to	efficiently	index	and	efficiently	search	massive	
datasets	of	text	documents	are	well	understood.	One	of	the	biggest	advances	in	CBIR	has	been	to	apply	
these	textual	indexing	techniques	to	the	image	domain	by	extracting	bags	of	visual	words	from	images	
and	indexing	these.	

Key	points	

Text-search	basics	
• Most	text-search	systems	(and	textual	document	classification	systems)	represent	the	text	in	a	

form	called	a	bag	of	words.	
o A	bag	is	an	unordered	data	structure	like	a	set,	but	which	unlike	a	set	allows	elements	

to	be	inserted	multiple	times.	
o In	a	bag	of	words,	the	order	of	the	words	in	the	document	is	irrelevant.	
o To	create	a	bag	of	words	from	a	text	document,	there	are	a	two	key	processes:	

§ Breaking	the	document	into	its	constituent	words	(tokenisation);		
§ Processing	the	words	to	reduce	variability	in	the	vocabulary	

• Often	the	words	are	processed	using	techniques	like	stemming	(which	
removes	variations	in	words	like	the	letters	s	and	ing	at	the	end	of	some	
words).	

• Certain	words	are	also	removed	(stop	word	removal)	–	words	like	“a”,	
“the”,	“at”,	“which”,	etc.	which	don't	have	semantic	meaning.		

• There	are	a	number	of	computational	models	for	text	search	systems,	but	we’re	interested	in	
one	called	the	vector-space	model.	

o In	the	vector-space	model,	text	documents	are	represented	by	vectors		
§ Obviously,	this	has	analogies	to	the	feature	vectors	we’ve	been	extracting	from	

images.	
o The	vectors	from	text	documents	contain	counts	of	the	number	of	times	each	word	in	

the	lexicon	(the	set	of	all	possible	words)	occurs	in	the	document.	
§ Essentially	the	vectors	are	just	histograms	of	word	counts.	
§ The	vector	for	any	given	document	is	highly	sparse	–	a	document	is	only	likely	

to	contain	a	small	proportion	of	all	possible	words!	
o Searching	using	the	vector	space	model	is	simple:	

§ A	query	can	be	turned	into	a	vector	form,	and	all	the	documents	in	the	system	
can	be	ranked	by	their	similarity	to	the	query.	

§ Cosine	similarity	(i.e.	the	angle	between	the	vectors)	is	often	used,	as	it	is	less	
affected	by	the	vector	magnitude	(the	query	vector	probably	only	contains	a	
few	words,	so	has	a	much	lower	magnitude	(e.g.	L1	or	L2	norm)	compared	to	
the	document	vectors).	

9	



• Many	of	the	documents	will	have	a	similarity	of	0	as	they	don’t	share	
any	terms	with	the	query.	

§ Often,	the	cosine	similarity	function	is	modified	to	weight	the	elements	of	
vectors	being	compared.	

• The	intuition	is	that	words	that	appear	a	lot	in	all	documents	should	
have	less	weight.	

• A	commonly	used	weighting	scheme	is	term	frequency-inverse	
document	frequency	(tf-idf)	

o In	practice,	actual	vectors	are	never	created	(it	would	just	be	too	inefficient),	and	the	
bag	of	words	is	indexed	directly	in	a	structure	called	an	inverted	index.	

§ An	inverted	index	is	a	map	of	words	to	postings	lists.	
• A	postings	list	contains	postings.	

o A	posting	is	a	pair	containing	a	document	identifier	and	word	
count.	

o Postings	are	only	created	if	the	word	count	is	bigger	than	1.	
§ Using	an	inverted	index,	you	can	quickly	find	out	which	documents	a	word	

occurs	in,	and	how	many	times	that	word	occurs	in	each	of	those	documents.	
• This	allows	for	really	efficient	computation	of	the	cosine	similarity,	as	

you	only	need	to	perform	calculations	for	the	words	that	actually	
appear	in	the	query,	and	the	documents	containing	those	words.	

Vector-quantisation	
• Vector	quantisation	is	a	lossy	data	compression	technique.	
• Given	a	set	of	vectors,	a	technique	like	K-Means	clustering	can	be	used	to	learn	a	fixed	size	set	

of	representative	vectors.	
• Vector	quantisation	is	achieved	by	representing	a	vector	by	another	approximate	vector,	which	

is	drawn	from	a	pool	of	representative	vectors.	Each	input	vector	is	assigned	to	the	“closest”	
vector	from	the	pool.	

The	bag-of-visual-words	(BoVW)	
• The	bag	of	visual	words	methodology	is	an	attempt	to	apply	the	techniques	used	for	

representing	textual	documents	to	the	computer	vision	domain.	
• A	visual	word	is	a	local	descriptor	vector	(e.g.	a	SIFT	vector)	that	has	been	appropriately	

vector	quantised	to	a	representative	vector.	
o The	set	of	representative	vectors	is	the	visual	equivalent	of	the	lexicon	–	it’s	often	

referred	to	as	a	codebook.	
o In	the	case	of	SIFT,	each	visual	word	represents	a	prototypical	pattern	of	local	image	

gradients	(and	the	underlying	arrangement	of	pixels	that	created	them).	
• The	(potentially	variable	sized)	set	of	local	descriptors	representing	an	image	can	be	

transformed	to	a	fixed	dimensionality	histogram	formed	by	counting	the	number	of	
occurrences	of	each	representative	vector.	

BoVW	Retrieval	
• From	the	BoVW,	retrieval	follows	naturally	using	the	techniques	developed	for	text	retrieval.	

o Visual	words	can	be	indexed	directly	in	an	inverted	index,	and	search	can	be	performed	
using	cosine	similarity,	etc.	

o There	is	one	very	important	parameter:	the	size	of	the	codebook	(i.e.	the	number	of	
possible	visual	words)	

§ Inverted	indexing	will	only	work	efficiently	if	the	occurrence	vectors	are	
sparse!	

§ Also	want	to	ensure	that	the	visual	words	a	sufficiently	distinctive	to	minimise	
mismatching.	

• Implies	you	need	a	very	large	codebook.	
o Typically	around	1	million	visual	words	in	a	modern	retrieval	

system.	



o Performing	k-means	with	millions	of	samples	to	learn	1	million	
centroids	in	a	128-dimensional	space,	followed	by	vector	
quantisation	of	many	millions	of	features	is	non-trivial!	

§ Nearest-neighbour	search	is	massively	expensive	–	have	
to	use	approximate	techniques,	like	approximate	k-d	
tree	(mentioned	last	lecture)	search	to	make	it	
computationally	tractable	in	a	reasonable	amount	of	
time.	

• Overall	process	for	building	a	retrieval	system:	
o Find	interest	points	and	extract	local	feature	from	all	the	images	
o Learn	a	codebook	from	(a	sample	of)	the	features	
o Perform	vector	quantisation	to	assign	each	feature	to	a	representative	visual	work	
o Construct	an	inverted	index	

Further	reading	
• Wikipedia	has	good	articles	on:	

o The	Vector-space	model	http://en.wikipedia.org/wiki/Vector_space_model		
o TF-IDF:	http://en.wikipedia.org/wiki/Tf–idf		
o Inverted	indexes:	http://en.wikipedia.org/wiki/Inverted_index	
o Vector	quantisation:	http://en.wikipedia.org/wiki/Vector_quantization		
o Bag	 of	 Visual	 Words	 (and	 applications):	 http://en.wikipedia.org/wiki/Bag-of-

words_model_in_computer_vision		
• The	seminal	paper	on	using	visual	words	for	retrieval	is	the	“Video	Google”	paper	by	Josef	Sivic	

and	Andrew	Zisserman	from	Oxford:	
http://web.cs.swarthmore.edu/~turnbull/cs97/f08/paper/sivic03.pdf			

Practical	exercises	
• Can	you	build	your	own	bag-of-words	representation	for	a	set	of	images?		

o Recap:	
§ Chapter	3	of	the	OpenIMAJ	tutorial	covers	k-means	clustering	(you	might	want	

to	use	an	approximate	variant	though)	
§ Chapter	5	of	the	OpenIMAJ	tutorial	covers	DoG-SIFT	features	which	can	be	used	

as	a	basis	for	your	visual	words.	
• With	your	bag	of	words	histogram	representations	can	you	find	some	images	that	are	similar	

to	each	other	and	some	that	are	dissimilar?	
o What	do	you	observe?	


