

COMP3204/COMP6223: Computer Vision

Programming for computer vision & other musings related to the coursework

Jonathon Hare jsh2@ecs.soton.ac.uk

Topics for Discussion

- * Writing code to do computer vision
- Convolution
 - * Fourier domain convolution & correlation
 - Template convolution
 - Gaussian Filtering
 - * "Ideal" filters; constructing a HP filter from a LP one
 - Output of HP filters
- Building Hybrid Images

Writing code for computer vision

Image Storage

- * Images usually stored as arrays of integers
 - * Typically 8-bits per pixel per channel
 - * 12-16 bit increasingly common (e.g. HDR imaging)
 - Uses unsigned pixel values
 - Compressed using a variety of techniques
 - * Lossy or lossless

Most vision algorithms are continuous

- * E.g. convolution with a continuous function (i.e. Gaussian)
- If we were writing the next Adobe Photoshop, it would be important that we kept out images in a similar format (integer pixels, same number of bits)
 - We would essentially round pixel values to the closest integer and clip those out of range
- For vision applications we don't want to do this as we'll lose precision

Always work with floating point pixels

- Unless they've been specifically optimised for integer math, all vision algorithms should use floating point pixel values
 - Ensure the best possible discretisation from operations involving continuous functions
 - * Higher effective bit depth (32/64 bits per pixel per band)
 - * Ability to deal with negative values
 - * Turns out to be very important for convolution!
 - * Ability to deal with numbers outside of the normal range
 - Just because a pixel has a grey level of 1.1 doesn't mean it's invalid, just that it's too bright to be displayed in the normal colour gamut.

Aside: arithmetic in MATLAB

- * Guidelines for writing vision code:
 - Convert any images to float types immediately once you've read them
 - Don't convert them back to integer types until you need to (i.e. for display or saving)
 - * Be mindful that a meaningful conversion might not just involve rounding if you want to preserve the data.

Convolution

* Convolution is an element-wise multiplication in the Fourier domain (*c.f. Convolution Theorem*)

* $f * g = ifft(fft(f) \cdot fft(g))$

- Whilst S and F might only contain real numbers, the FFTs are complex (*real* + *imag*j)
 - * Need to do complex multiplication!

(x+yi)(u+vi) = (xu-yv) + (xv+yu)i

Aside: phase and magnitude

- Given a complex number (n = real + imagj) from an FFT we can compute its phase and magnitude
 - * phase = atan2(imag, real)
 - * magnitude = sqrt(real*real + imag*imag)
- We might perform this transformation to display the FFT as it conceptually helps us understand what the FFT is doing
- We can't use this representation to perform convolution however (need to transform back to complex form first)

Aside: Displaying FFTs

 FFTs are often re-ordered so that the DC component (0frequency) component is in the centre:

Template Convolution

* In the time domain, convolution is:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau.$$

* Notice that the image or kernel is "flipped" in time

* Also notice that the is no normalisation or similar

Template Convolution

Template Convolution

```
int kh = kernel.height;
int kw = kernel.width;
int hh = kh / 2;
int hw = kw / 2;
Image clone = new Image(image.width, image.height);
for (int y = hh; y < image_height - (kh - hh); y++) {</pre>
 for (int x = hw; x < image.width - (kw - hw); x++) {
   float sum = 0:
   for (int j = 0, jj = kh - 1; j < kh; j++, jj--) {</pre>
    for (int i = 0, ii = kw - 1; i < kw; i++, ii--) {</pre>
      int rx = x + i - hw;
      int ry = y + j - hh;
      sum += image.pixels[ry][rx] * kernel.pixels[jj][ii];
    }
   }
   clone.pixels[y][x] = sum;
 }
}
```

What if you don't flip the kernel?

- * Obviously if the kernel is symmetric there is no difference
- However, you're actually not computing convolution, but another operation called cross-correlation

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) g(t+\tau) dt,$$

- * represents the complex conjugate
- (you can compute this with the multiplication of the FFTs just like convolution: iFFT(FFT(f)* . FFT(g))

Ideal Low-Pass filter

 "Ideal" low pass filter removes all frequencies above a cutoff

Ideal Low-Pass filter - problems

Gaussian filters - why

Building Gaussian Filters

High-pass filters

- "To obtain a high-pass filtered image, subtract a lowpass filtered image from the image itself"
 - 0.9 * $I_{IP} = I * G$ 0.8 0.7 * $I_{HP} = I - I_{IP}$ 0.6 0.5 * $I_{HP} = I - I * G$ 0.4 0.3 * $I_{HP} = I * \delta - I * G$ 0.2 0.1 * $I_{HP} = I * (\delta - G)$ 0 -0.1 2 3 5 8 4 6

9

Note - Don't do this!

* $I_{HP} = I * (\delta - G)$ is not the same as $I_{HP} = I * (1 - G)$

High-pass filters have a mixture of negative and positive coefficients

- ...that means the resultant image will also have positive and negative pixels
 - this is important for example it can tell us about the direction of edges:
 - * [-0.5, 0.5] kernel
 - (remember convolution means kernel flipped)
 - * +values in the output image mean edge from right to left
 - values in output image mean edge from left to right
- * Convolution implementation MUST NOT:
 - normalise
 - result in unsigned types

Building hybrid images

... is really simple

- * Add the low pass and high-pass images together
- * Don't:
 - average the two images
 - * do a weighted combination of the two images
- just add them (and clip if necessary)

Now it's Time For The Gallery

Abdullah Hamza Papril Seebgl Daniel Schormans

Questions / Discussion