
COMP3204/COMP6223: Computer Vision

Programming for computer 
vision & other musings 
related to the coursework

Jonathon Hare
jsh2@ecs.soton.ac.uk

mailto:jsh2@ecs.soton.ac.uk


Topics for Discussion
❖ Writing code to do computer vision

❖ Convolution

❖ Fourier domain convolution & correlation

❖ Template convolution

❖ Gaussian Filtering

❖ “Ideal” filters; constructing a HP filter from a LP one

❖ Output of HP filters

❖ Building Hybrid Images



Writing code for computer vision



Image Storage

❖ Images usually stored as arrays of integers

❖ Typically 8-bits per pixel per channel

❖ 12-16 bit increasingly common (e.g. HDR imaging)

❖ Uses unsigned pixel values

❖ Compressed using a variety of techniques

❖ Lossy or lossless



Most vision algorithms are continuous 

❖ E.g. convolution with a continuous function (i.e. Gaussian)

❖ If we were writing the next Adobe Photoshop, it would be 
important that we kept out images in a similar format 
(integer pixels, same number of bits)

❖ We would essentially round pixel values to the closest 
integer and clip those out of range

❖ For vision applications we don’t want to do this as we’ll 
lose precision



Always work with floating point pixels
❖ Unless they’ve been specifically optimised for integer math, all vision 

algorithms should use floating point pixel values

❖ Ensure the best possible discretisation from operations involving 
continuous functions

❖ Higher effective bit depth (32/64 bits per pixel per band)

❖ Ability to deal with negative values

❖ Turns out to be very important for convolution!

❖ Ability to deal with numbers outside of the normal range

❖ Just because a pixel has a grey level of 1.1 doesn’t mean it’s 
invalid, just that it’s too bright to be displayed in the normal 
colour gamut.



Aside: arithmetic in MATLAB



❖ Guidelines for writing vision code:

❖ Convert any images to float types immediately once 
you’ve read them

❖ Don’t convert them back to integer types until you 
need to (i.e. for display or saving)

❖ Be mindful that a meaningful conversion might not 
just involve rounding if you want to preserve the 
data.



Convolution



❖ Convolution is an element-wise multiplication in the 
Fourier domain (c.f. Convolution Theorem)

❖ f﹡g = ifft(fft(f) . fft(g))

❖ Whilst S and F might only contain real numbers, the 
FFTs are complex (real + imagj)

❖ Need to do complex multiplication!



Aside: phase and magnitude 
❖ Given a complex number (n = real + imagj) from an FFT we 

can compute its phase and magnitude

❖ phase = atan2(imag, real)

❖ magnitude = sqrt(real*real + imag*imag)

❖ We might perform this transformation to display the FFT 
as it conceptually helps us understand what the FFT is 
doing

❖ We can’t use this representation to perform convolution 
however (need to transform back to complex form first)



Aside: Displaying FFTs
❖ FFTs are often re-ordered so that the DC component (0-

frequency) component is in the centre:



Template Convolution

❖ In the time domain, convolution is: 

❖ Notice that the image or kernel is “flipped” in time

❖ Also notice that the is no normalisation or similar



Template Convolution



Template Convolution
int kh = kernel.height; 
int kw = kernel.width; 
int hh = kh / 2; 
int hw = kw / 2; 
Image clone = new Image(image.width, image.height); 
for (int y = hh; y < image.height - (kh - hh); y++) { 
for (int x = hw; x < image.width - (kw - hw); x++) { 
float sum = 0; 

  for (int j = 0, jj = kh - 1; j < kh; j++, jj--) { 
for (int i = 0, ii = kw - 1; i < kw; i++, ii--) { 

 int rx = x + i - hw; 
   int ry = y + j - hh; 

sum += image.pixels[ry][rx] * kernel.pixels[jj][ii]; 
} 

  } 
  clone.pixels[y][x] = sum; 
} 

}



What if you don’t flip the kernel?
❖ Obviously if the kernel is symmetric there is no difference

❖ However, you’re actually not computing convolution, but 
another operation called cross-correlation

❖ * represents the complex conjugate

❖ (you can compute this with the multiplication of the FFTs 
just like convolution: iFFT(FFT(f)* . FFT(g)) 





Ideal Low-Pass filter
❖ “Ideal” low pass filter removes all frequencies above a 

cutoff



Ideal Low-Pass filter - problems



Gaussian filters - why



Building Gaussian Filters



High-pass filters
❖ “To obtain a high-pass filtered image, subtract a low-

pass filtered image from the image itself”

❖ ILP = I﹡G

❖ IHP = I-ILP

❖ IHP = I - I﹡G

❖ IHP = I﹡𝛿 - I﹡G

❖ IHP = I﹡(𝛿 - G)
1 2 3 4 5 6 7 8 9

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



Note - Don’t do this!

❖ IHP = I﹡(𝛿 - G) is not the same as IHP = I﹡(1 - G)

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This is basically a box 
filter as sigma 

increases

(i.e. low pass)



High-pass filters have a mixture of negative and positive 
coefficients

❖ …that means the resultant image will also have positive and negative 
pixels

❖ this is important - for example it can tell us about the direction of 
edges:

❖ [-0.5, 0.5] kernel

❖ (remember convolution means kernel flipped)

❖ +values in the output image mean edge from right to left

❖ -values in output image mean edge from left to right

❖ Convolution implementation MUST NOT:

❖ normalise

❖ result in unsigned types



Building hybrid images



…is really simple

❖ Add the low pass and high-pass images together

❖ Don’t: 

❖ average the two images

❖ do a weighted combination of the two images

❖ just add them (and clip if necessary)



Now it’s Time 
For The Gallery



Figure 4: ITERATIVE BIRD-PLANE

Figure 5: ITERATIVE EINSTEIN-MARILYN

Figure 6: ITERATIVE PROFESSORS

4

Sanjeet Mukherjee  

sigma=5 size=21 sigma=2 size=5  
 

Additionally, using the images that I found1,2, I created two other hybrid images. 

Image 1 Image 2 Low-Pass Image High-Pass Image Hybrid 

  sigma=4 size=13 sigma=3 size=13  

  sigma=5 size=27 sigma=3 size=13  

                                                           
1 http://www.thoughtpursuits.com/wp-content/uploads/2014/03/happy-sad-face-720x340.jpg 
2 https://s-media-cache-ak0.pinimg.com/originals/35/48/cc/3548cc24b3eceee23656675d3ec088f7.jpg 

Pawel Ziebal  

D Plane and Bird

Figure 9: A low frequency bird with a high frequency plane, �l = 5 and �h = 3

E Horrified and Smiling

Figure 10: A low frequency smiling face with a high frequency Bird, �l = 5 and �h = 5

F Numbers

Figure 11: A low frequency number 3 with a high frequency number 5, �l = 5 and �h = 5

6

Nicholas Bishop 

Matthew Langford  

Matt Andrew meja1g14@soton.ac.uk 2

high-pass and combined images:

As can be seen, while the combined image does indeed appear to shift between the two base images with
distance, the border of these images does not appear to have been processed properly. This is due to the fact
that the borders were set to zero during convolution, meaning that when the low-pass image was subtracted
from the original to obtain the high-pass, the borders were left unchanged from the original. To solve this, I
modified the convolution function to wrap the borders of the image, using values from the opposite side of the
image if the kernel was outside the image’s dimensions.

As can be seen, these images do not su↵er from the bordering issues of the previous version, yet still work as
intended as a hybrid image, seemingly changing interpretation between the two component images as distance
changes. The image below attempts to illustrate this e↵ect more clearly:

.
I believe my functions are an e↵ective and flexible solution to creating working hybrid images. As can be seen
in [Appendix B] my functions are capable of taking di↵erent kernels for each component image and processing
them without issue.
If I had time and desired to expand this into a standalone application capable of taking any two images of
equal dimension along with a value with which to create the Gaussian kernel to convolve each with, I would
simply need to change the filepaths and float values in the main function to draw their values from the provided
arguments as opposed to the hard-coded values they are currently, as these are the only hard-coded values in
my implementation. I have included more examples of the hybrid images produced by my implementation in
[Appendix C].

2

Matt Andrew  

Nicholas Bishop 

D Plane and Bird

Figure 9: A low frequency bird with a high frequency plane, �l = 5 and �h = 3

E Horrified and Smiling

Figure 10: A low frequency smiling face with a high frequency Bird, �l = 5 and �h = 5

F Numbers

Figure 11: A low frequency number 3 with a high frequency number 5, �l = 5 and �h = 5

6

Daniel Schormans  

�+-%'��!'�4 �/0 !)/���������		


�$!�$4�-% �%(�#!��!'*2�2�.��-!�/! ��4�(!-#%)#���+%�/0-!�*"��%'�-4��'%)/*)��) ��*)�' ��-0(+����$!

'*2�+�..�2�.��++'%! �/*��-0(+��/$!�$%#$�+�..��++'%! �/*��'%)/*)�

��1%)#�/-%! ���"!2�"��!.��/$!�*0/�*(!�-!�''4� !+!) .�*)�%"�/$!�"��!. %)�/$!�%(�#!.��-!�/$!�.�(!�.%5!

�) ��)#'!����$!�.!+�-�/!�%(�#!.�'**&! �'%&!�/$!4�$� �#** �+*/!)/%�'���0/�4*0���)�/!''�"-*(�/$!

$4�-% �/$�/�/$!�'%#$/%)#�%)�/$!�/2*�%(�#!.�%.�.'%#$/'4� %""!-!)/�

����!����"

�'%)/*)��) ��-0(+�%(�#!.�/�&!)�"-*( $//+���! %/%*)��))��*(�+*'%/%�.

April Selby  

However, the black borders generated during the low-pass filtering will now be filled with the value that
those pixels had in the original image. The function SetBorderBlack has been implemented in order to re-
cover such borders. It receives as inputs the high-pass filtered image and the template used for convolution.
Then, it creates a new image of the same size, which is set entirely to black. By using three nested for
loops, the current values of the pixels where the template had been centered are moved one by one to their
corresponding position in the output image. To facilitate the visualization of the high-filtered image (Figure
4) 0.5 has been added to all of its pixels in each colour channel.

2.4. Construction of the hybrid image

Once both natural images have been properly filtered, they are added together to construct the resulting
hybrid image, which, in this case, is the one shown on Figure 5.

2.5. Scaling and visualization

In order to recreate the e↵ect of looking at the hybrid image from di↵erent distances and showing its two
interpretations, the function PlotScaleTruesize has been implemented. Given the true-size hybrid image,
this function generates three copies that are 0.5, 0.2 and 0.1 times its size. Then, it builds a new image that
contains the other four and shows them from right to left and in order of size.

Figure 5: E↵ect of looking at the resulting image from di↵erent distances

3. Results

The image obtained, which can be seen on Figure 5, is an example of how hybrid images can be used
to create textures that tend to disappear as the observer moves away. In this particular case, a viewer can
get the impression of seeing a ”lion man” at short distance. Nonetheless, the texture corresponding to the
lion fades within a few meters. The main facial features of the animal and the man (eyes, nose and mouth)
are practically placed on top of each other. Besides, the blond hair and the beard of the man can be easily
identified as lion fur. So this example also shows that colour grouping and alignments among contents of
both spatial frequencies help to create the distinct illusions, making it easier to perceive a coherent image
whether at close or far distance.

Other examples of hybrid images that have been obtained using the procedure described through this
paper are shown on Figure 6.

4

Sofia Parrondo Garcia  

Abdullah Hamza
 

 

 We 

function convolved = convolve(image,template) 
%  Usage: [new image] = convolve(image,template of point values) 
%  Parameters: image      - array of points 
%              template   - array of weighting coefficients 

 



Questions / Discussion


