
COMP3204/COMP6223: Computer Vision

Consistent matching Jonathon Hare
jsh2@ecs.soton.ac.uk

mailto:jsh2@ecs.soton.ac.uk


Recap: local interest points, features and matching

❖ In the previous lectures we’ve looked at how we can:

❖ Locate stable interest points in multiple images

❖ Extract highly robust and discriminative local 
descriptors around each interest point

❖ Match interest points across images by comparing 
their local features



How can we eliminate mismatches?



Feature distinctiveness

❖ Even the most advanced local feature can be prone to 
being mismatched.

❖ There is always a tradeoff in feature distinctiveness.

❖ If it’s too distinctive will not match subtle variations 
due to noise of imaging conditions.

❖ If it’s not distinctive enough it will match everything.



Constrained matching

❖ Assume we are given a number of correspondences 
between the interest points in a pair of images

❖ Is it possible to estimate which of those 
correspondences are inliers (i.e. correct) or outliers 
(i.e. incorrect/mismatches)?

❖ What assumptions do we have to make?



By assuming a geometric mapping 
between the two scenes can  we recover 

that mapping and eliminate the 
mismatches?



Geometric Mappings



What are geometric transforms?

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Point Transforms

x’=Tx

We’re interested in transforms that take the following form:



Point Transforms

x’=Tx

The transform matrix

the transformed coordinate the original coordinate



The Affine Transform

x’=Ax+b

x’
y’

x
y

b1

b2+a11 a12 
a22 a22=

The affine transform is defined as

or



The Affine Transform

It’s more convenient to write this as a single transform matrix by 
adding an extra dimension to each vector:

x’
y’
1

a11 a12 b1

a21 a22 b2

0   0   1
= x

y
1



Translation

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Translation and Rotation

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Scaling

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Aspect Ratio

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Shear

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Affine Transform

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

6 DoF: translation + rotation + scale + aspect ratio + shear

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


Similarity Transform

4 DoF: translation+rotation+scale

Images from Larry Zitnick’s slides: h8p://courses.cs.washington.edu/courses/csep576/11sp/pdf/TransformaCons.pdf

http://courses.cs.washington.edu/courses/csep576/11sp/pdf/Transformations.pdf


What’s missing?



More degrees of freedom

Normalise by w so that the transformed vector is [•,•,1]



Homogeneous coordinates

wx’
wy’
w



The Planar Homography (Projective Transformation)

Keystone distortions



Recovering a geometric mapping



Simultaneous equations
❖ It is possible to estimate a transform matrix from a set of point 

matches by solving a set of simultaneous equations

❖ Need at least 4 point matches to solve a Homography or 3 to 
solve an affine transform

❖ The actual solution technique isn’t important…

❖ It is important to note that in the presence of noise, and with 
potentially more matches than required, that we have to solve 
an overdetermined system

❖ We need to seek the minimum error or least-squares solution



Least-squares



line of best fit (minimises SSE)

residual (difference between 
observed and predicted)

SSE=Σ(residual)2



SSE=Σ(residual)2

Red dots are predicted 
positions from the estimated 

transform

residuals are 
Euclidean 

distance between 
observed and 

predicted 
positions



Robust Estimation



Problem: Noisy data
❖ Need a way to deal with estimating a model (i.e. a 

transform matrix) in the presence of high amounts of 
noise (i.e. mis-matches)

❖ Least-squares will be highly suboptimal, and 
probably find a very bad solution.

❖ Ideally, we want to identify the correct data (the 
inliers) and the bad data (the outliers)

❖ Then estimate the model using only the good data.



Robust estimation techniques

❖ The problem of learning a model in the presence of 
inliers and outliers comes under an area of mathematics 
called robust estimation or robust model fitting

❖ There are a number of different possible techniques

❖ …lets look at one of the simplest…



RANSAC: RAndom SAmple Consensus 
Assume: 

M data items required to estimate model T 

N data items in total 

Algorithm: 

1.) select M data items at random 

2.) estimate model T 

3.) find how many of the N data items fit T within tolerance tol, call this K 
(i.e. compute how many times the absolute residual is less than tol). The points 
that have an absolute residual less than tol are the inliers; the other points are 
the outliers. 

4.) if K is large enough, either accept T, or compute the least-squares estimate 
using all inliers, and exit with success. 

5.) repeat steps 1..4 nIterations times 

6.) fail - no good T fit of data



Demo: RANSAC Line Estimation



Further applications of robust local 
matching



Object recognition & AR

❖ Object recognition

❖ Image of object is matched against scene, and 
recognised if there is a consistent match

❖ Augmented reality

❖ Data can be added to a scene on the basis of a match



Demo: recognition/tracking/ar



3D reconstruction

❖ It’s possible to estimate depth, and ultimately build a 
complete 3d scene from sets of point correspondences 
formed from matching local features



Demo: 3D reconstruction



Matching music/sounds
❖ Image features can be used to 

match music!
❖ That’s how systems like 

Shazam work
❖ A recording of a piece of 

music can be turned into a 
picture called a spectrogram.

❖ Local image features can be 
extracted, described and 
matched from the 
spectrogram images



Demo: Spectrogram



Problems with direct local feature 
matching



Local feature matching is slow!
❖ Typical image (800x600) might have ~2000 DoG Interest 

points/SIFT descriptors

❖ Each SIFT descriptor is 128 dimensions

❖ Now assume you want to match a query image 
against a database of images…

❖ The distance between every query feature and every 
other features needs to be calculated

❖ Can this be optimised somehow?



Efficient Nearest Neighbour Search

❖ How can we quickly find the nearest neighbour to a 
query point in a high dimensional space?

❖ Index the points in some kind of tree structure?

❖ Hash the points?

❖ Quantise the space (more on this next time)



K-D Trees

❖ Binary tree structure that partitions the space along axis-
aligned hyperplanes

❖ Typically take each dimension in turn and splits on 
the median of the points in the enclosing partition.

❖ Stop after a certain depth, or when the number of 
points in a leaf is less than a threshold



K-D Tree



K-D Tree



K-D Trees

❖ Search by walking down the tree until a leaf is hit, and 
then brute-force search to find the best in the leaf.

❖ This is not guaranteed to be the best though…

❖ To have to walk back up the tree and see if there are 
any better matches, and only stop once the root is 
reached (note you don’t have to check a subtree if it’s 
clear that all points in that subtree are further than the 
current best).



K-D Tree
Query point



K-D Tree

Walk down the tree



K-D Tree

Find the nearest 
neighbour in the leaf



K-D Tree

Backtrack, and see if 
the next subtree 
needs checking



K-D Tree

Backtrack, and see if 
the next subtree 
needs checking



K-D Tree

Backtrack, and see if 
the next subtree 
needs checking

No need to check 
this subtree



K-D Tree problems

❖ Doesn’t scale well to high dimensions

❖ You tend to end up needing to search most of the tree

❖ There are approximate versions that won’t necessarily 
return the exact answer that do scale (if you don’t mind 
the potential for mismatch)



Hashing

❖ Locality Sensitive Hashing (LSH) creates hash codes for 
vectors such that similar vectors have similar hash 
codes!



Sketching
❖ A technique called sketching concatenates binary hashes 

into a bit string.

❖ With the correct LSH function, the Hamming distance 
between a pair of sketches is proportional to the 
Euclidean distance between the original vectors

❖ Can easily compress SIFT features to 128 bits

❖ Hamming distance computation is cheap

❖ Lookup tables and bitwise operations



Summary
❖ Inconsistent local feature matches can be removed by assuming 

some form of constraint holds between the two images

❖ This is usually a geometric mapping

❖ Affine transform or Homography

❖ Can be estimated by finding the least-squares solution of a 
set of simultaneous equations

❖ Robust methods such as RANSAC allow inliers and outliers 
to be determined whilst learning the mapping

❖ Interest point matching is slow… 

❖ K-D Trees and Hashing can help


