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Text Information Retrieval



The bag data structure 

❖ A bag is an unordered data 
structure like a set, but which 
unlike a set allows elements to 
be inserted multiple times.
❖ sometimes called a multiset 

or a counted set
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Text processing (feature extraction)
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The Vector-Space Model

❖ Conceptually simple:

❖ Model each document by a vector

❖ Model each query by a vector

❖ Assumption: documents that are “close together” in 
space are similar in meaning.

❖ Use standard similarity measures to rank each 
document to a query in terms of decreasing similarity



Bag of Words Vectors
❖ The lexicon or vocabulary is the set of all (processed) words across 

all documents known to the system.

❖ We can create vectors for each document with as many dimensions 
as there are words in the lexicon.

❖ Each word in the document’s bag of words contributes a count to 
the corresponding element of the vector for that word.

❖ In essence, each vector is a histogram of the word occurrences 
in the respective document.

❖ Vectors will have very high number of dimensions, but will 
be very sparse.



The Vector-space Model
Star

Diet

Doc about astronomy
Doc about movie stars

Doc about mammal behavior



Searching the VSM
T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3
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Example:
D1 = 2T1 + 3T2 + 5T3
D2 = 3T1 + 7T2 +   T3
Q = 0T1 + 0T2 +  2T3

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

• …cosine similarity



Recap: Cosine Similarity



Recap: Cosine Similarity
If p and q are both high dimensional and sparse, 

then you’re going spend a lot of time multiplying 0 
by 0 and adding 0 to the accumulator

These can be pre-computed and stored!



Inverted Indexes
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…A map of words to lists of postings…

Telescope [doc1:15]



Inverted Indexes
Aardvark
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[doc3:4]

[doc1:2]
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A posting is a pair formed by a document ID and the number of times 
the specific word appeared in that document

Telescope [doc1:15]



Computing the Cosine Similarity

❖ For each word in the query, lookup the relevant 
postings list and accumulate similarities for only the 
documents seen in those postings lists

❖ much more efficient than fully comparing vectors…
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Query: “Movie Star”

Telescope [doc1:15]



Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

Query: “Movie Star”

doc2 10x1

Accumulation table:

[doc2:10]

Telescope [doc1:15]
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Query: “Movie Star”

doc2 10⨉1 + 4⨉1

Accumulation table:

13⨉1doc1
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Telescope [doc1:15]
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doc2 (10⨉1 + 4⨉1) / 14.04 = 0.997

Accumulation table:
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Weighting the vectors
❖ The number of times a word occurs in a document 

reflects the importance of that word in the document.

❖ Intuitions:

❖ A term that appears in many documents is not 
important: e.g., the, going, come, …

❖ If a term is frequent in a document and rare across 
other documents, it is probably important in that 
document.



Possible weighting schemes
❖ Binary weights

❖ Only presence (1) or absence (0) of a term recorded in vector.

❖ Raw frequency

❖ Frequency of occurrence of term in document included in vector.

❖ TF-IDF

❖ Term frequency is the frequency count of a term in a document.

❖ Inverse document frequency (idf) provides high values for rare 
words and low values for common words.



Vector Quantisation



Learning a Vector Quantiser

❖ Vector quantisation is a lossy data 
compression technique. 

❖ Given a set of vectors, a technique 
like K-Means clustering can be 
used to learn a fixed size set  
of representative vectors. 

❖ The representatives are the 
mean vector of each cluster in 
k-means

❖ The set of representation 
vectors is called a codebook

#1
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#5



Vector Quantisation

❖ Vector quantisation is achieved 
by representing a vector by 
another approximate vector, 
which  
is drawn from a pool of 
representative vectors. 
❖ Each input vector is assigned 

to the “closest” vector from 
the pool. 

#1

#2

#3

#4

#5

assign to #5

assign to #4



Visual Words



SIFT Visual Words

❖ We can vector quantise SIFT descriptors (or any other local feature)

❖ Each descriptor is replaced by a representative vector known as 
a visual word

❖ In essence the visual word describes a small image patch with 
a certain pattern of pixels

❖ In many ways the process of applying vector quantisation to 
local features is analogous to the process of stemming words.

❖ The codebook is the visual equivalent of a lexicon or vocabulary.



Bags of Visual Words

❖ Once we’ve quantised the local features into visual 
words, they can be put into a bag.

❖ This is a Bag of Visual Words (BoVW)

❖ We’re basically ignoring where in the image the local 
features came from (including ignoring scale)



Histograms of Bags of Visual Words
❖ Like in the case of text, once we 

have a BoVW and knowledge of the 
complete vocabulary (the codebook) 
we can build histograms of visual 
word occurrences! 
❖ This is rather nice… it gives us a 

way of aggregating a variable 
number of local descriptors into a 
fixed length vector.

❖ Useful for machine learning
❖ But also allows us to apply 

techniques for text retrieval to 
images



Demo: SIFT visual word histogram



Visualising Visual Words



The effect of codebook size

❖ There is one key parameter in building visual words 
representations - the size of the vocabulary.

❖ Too small, and all vectors look the same

❖ Not distinctive

❖ Too big, and the same visual words might never 
appear across images

❖ Too distinctive



Content-based Image Retrieval



Descriptors Imagesearch 
statement:

similarity 
matcher
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BoVW Retrieval

❖ With the visual word representation, everything used 
for text retrieval can be applied directly to images

❖ vector space model

❖ cosine similarity

❖ weighting schemes

❖ inverted index



Optimal codebook size
❖ Inverted index only gives a performance gain if the 

vectors are sparse (you don’t want to end up explicitly  
scoring all documents)

❖ Visual words also need to sufficiently distinctive to 
minimise mismatching

❖ Implies a very big codebook

❖ Modern research systems often use 1 Million or 
more visual words for SIFT vectors



Problems with big codebooks

❖ There’s a slight problem…

❖ Need to use k-means to learn 1 million clusters in 128 
dimensions from 10’s of millions of features

❖ Non-trivial!

❖ Vector quantisation has the same problems

❖ Have to use approximate methods, like 
approximate k-d trees



Overall process for building a BoVW retrieval system

❖ Collect the corpus of images that are to be indexed and 
made searchable

❖ Extract local features from each image

❖ Learn a large codebook from (a sample of) the features

❖ Vector quantise the features, and build BoVW 
representations for each image

❖ Construct an inverted index with the BoVW 
representations



Demo: A BoVW retrieval system for 
geo-location estimation



Current research
❖ Lot of interest in content-based search for massive datasets

❖ Two directions:

❖ Hashing of local features

❖ Tiny features (~16 bytes per image!)

❖ Local features still used as the basis, but encoded in a 
different way to make dense features

❖ Still uses k-means, but much smaller k

❖ known as VLAD: Vector of Locally Aggregated Descriptors

❖ VLAD descriptors then vector quantised using a 
“product quantiser”



Summary
❖ Effective and efficient text search can be achieved with 

bags of words, the vector-space model and inverted 
indexes.

❖ Vector-quantisation can be applied to local features, 
making them into visual words.

❖ Then you can apply all the same techniques used for text 
to make efficient retrieval systems!

❖ This is a good way of making highly scalable, effective 
and efficient content-based image retrieval systems


