

COMP3204/COMP6223: Computer Vision

Image search and Bags of Visual Words

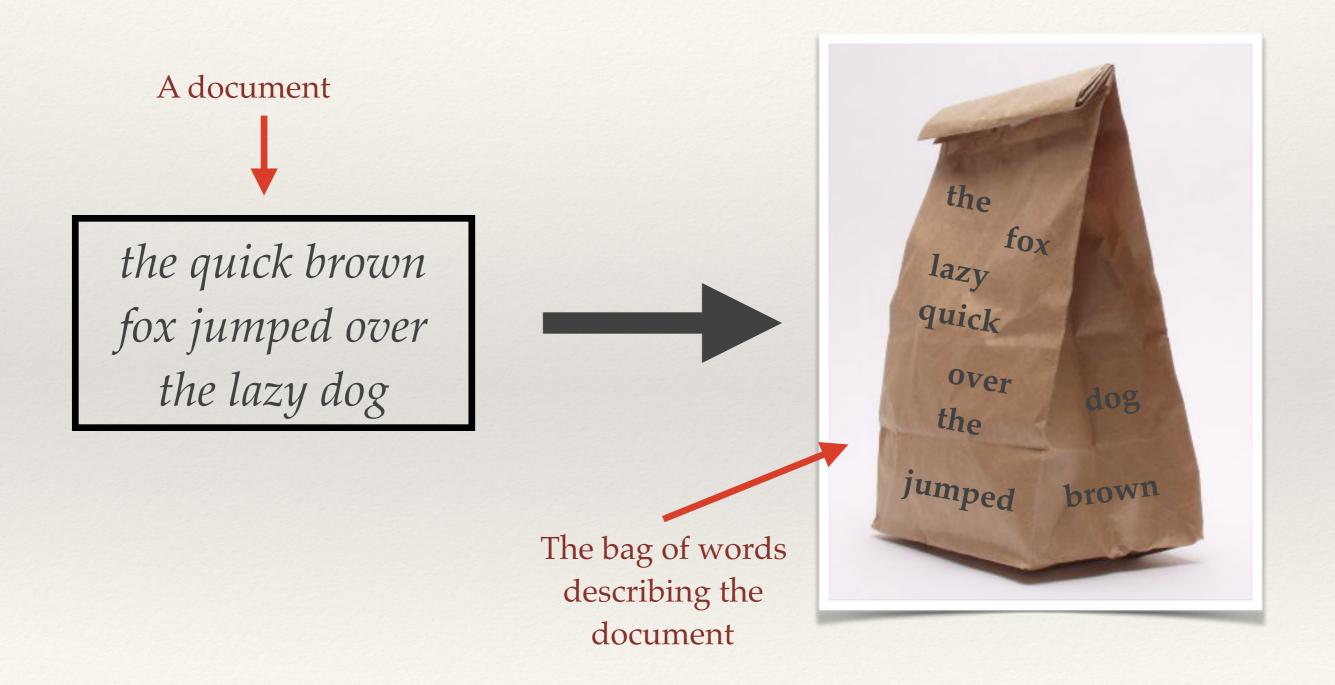
Jonathon Hare jsh2@ecs.soton.ac.uk

Text Information Retrieval

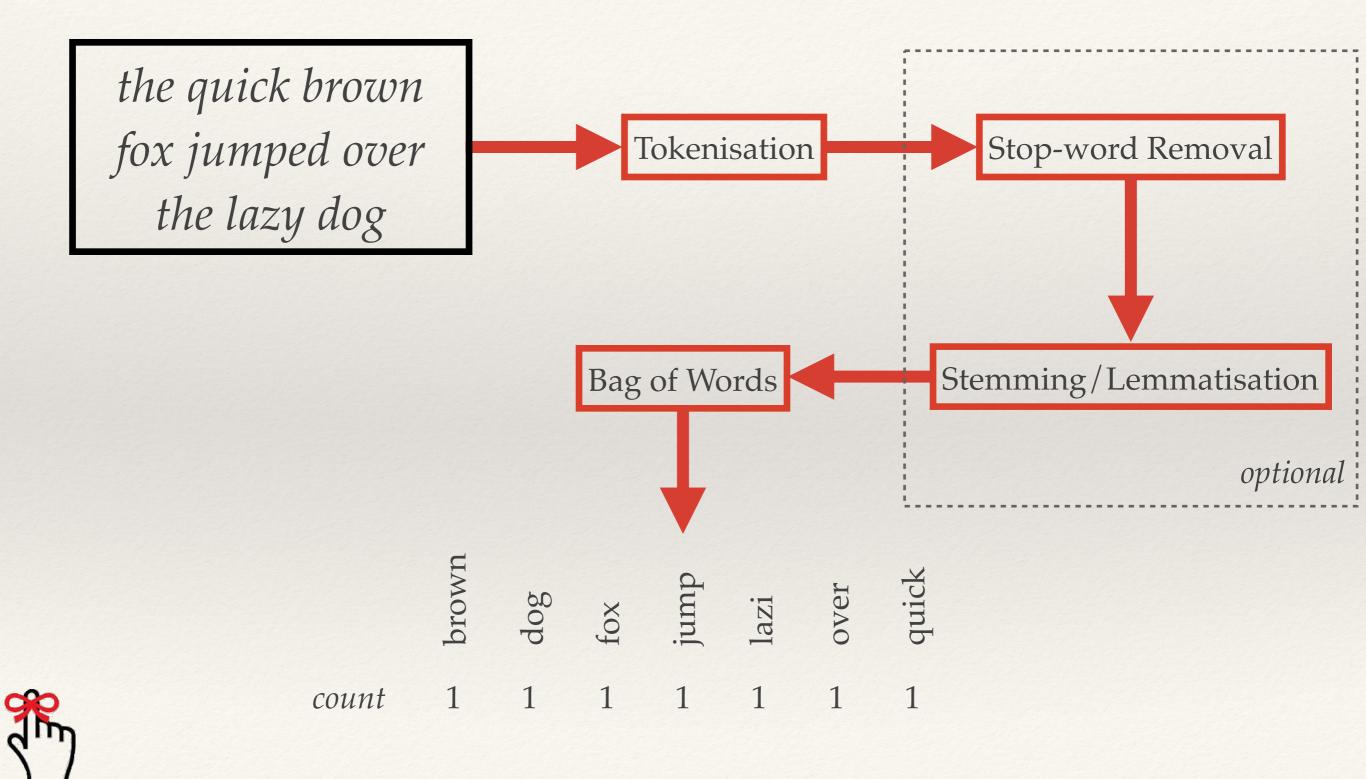
The bag data structure

- A bag is an unordered data structure like a *set*, but which unlike a set allows elements to be inserted multiple times.
 - sometimes called a *multiset* or a *counted set*

Bag of Words



Text processing (feature extraction)



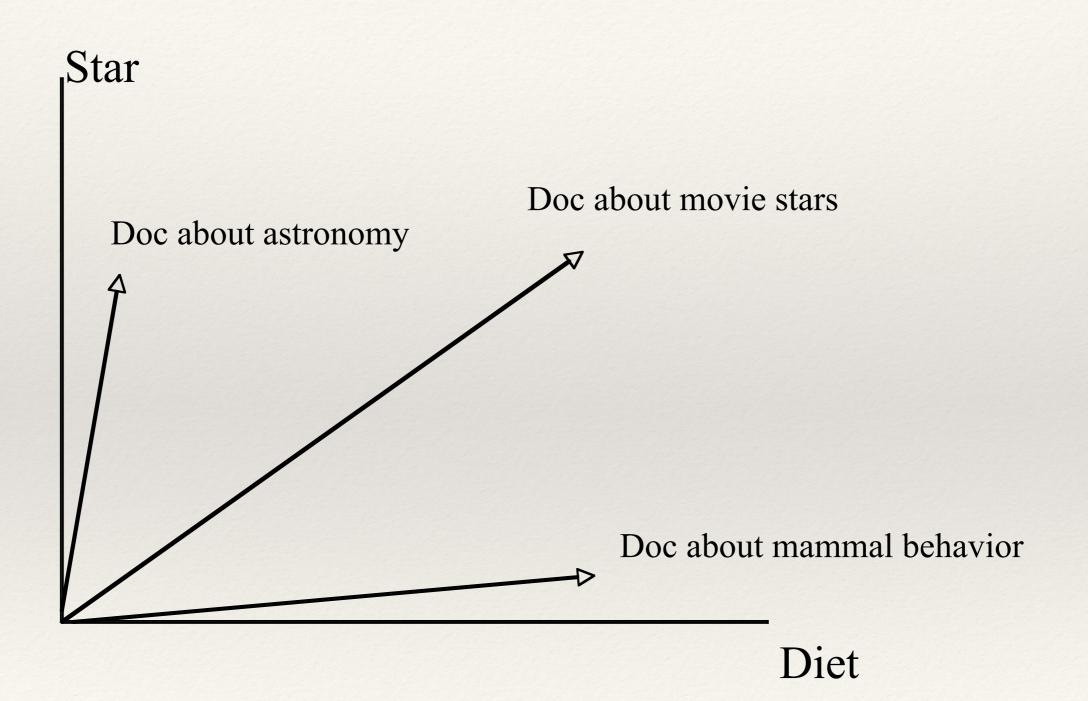
The Vector-Space Model

- Conceptually simple:
 - * Model each document by a vector
 - * Model each query by a vector
 - Assumption: documents that are "close together" in space are similar in meaning.
 - Use standard similarity measures to rank each document to a query in terms of decreasing similarity

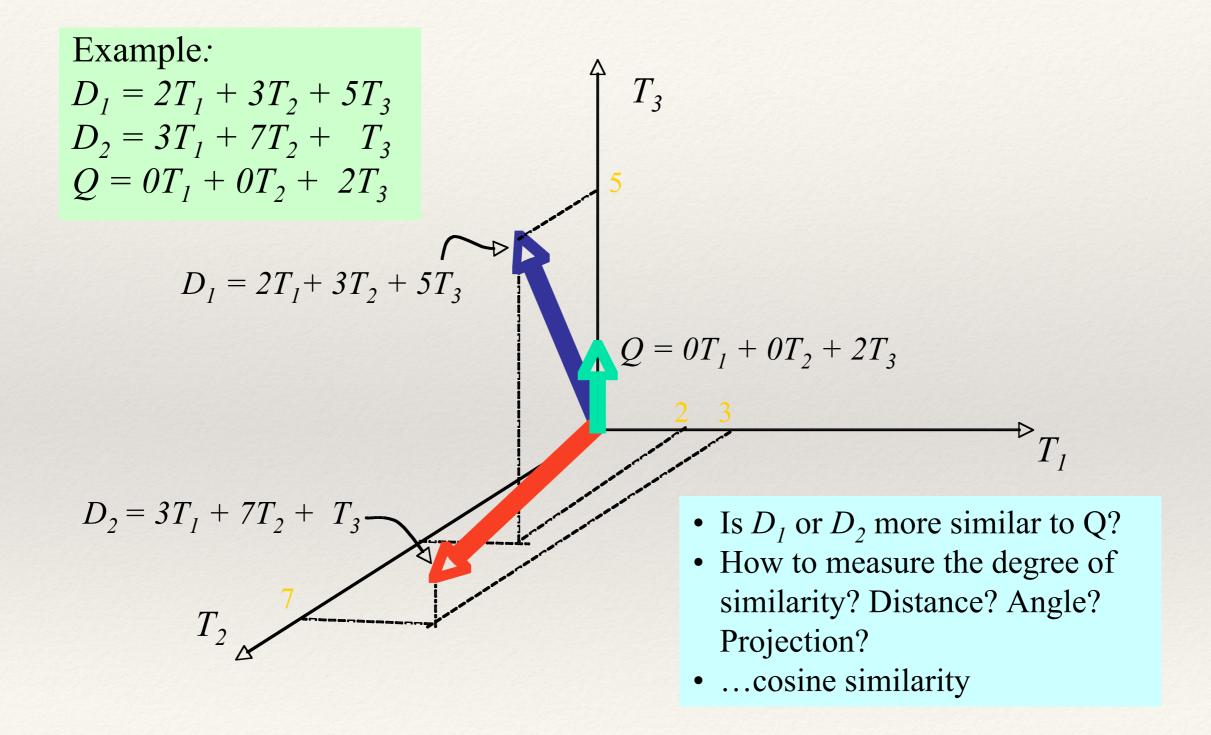
Bag of Words Vectors

- * The lexicon or vocabulary is the **set** of all (processed) words across all documents known to the system.
- * We can create vectors for each document with as many dimensions as there are words in the lexicon.
 - * Each word in the document's bag of words contributes a count to the corresponding element of the vector for that word.
 - * In essence, each vector is a histogram of the word occurrences in the respective document.
 - Vectors will have very high number of dimensions, but will be very sparse.

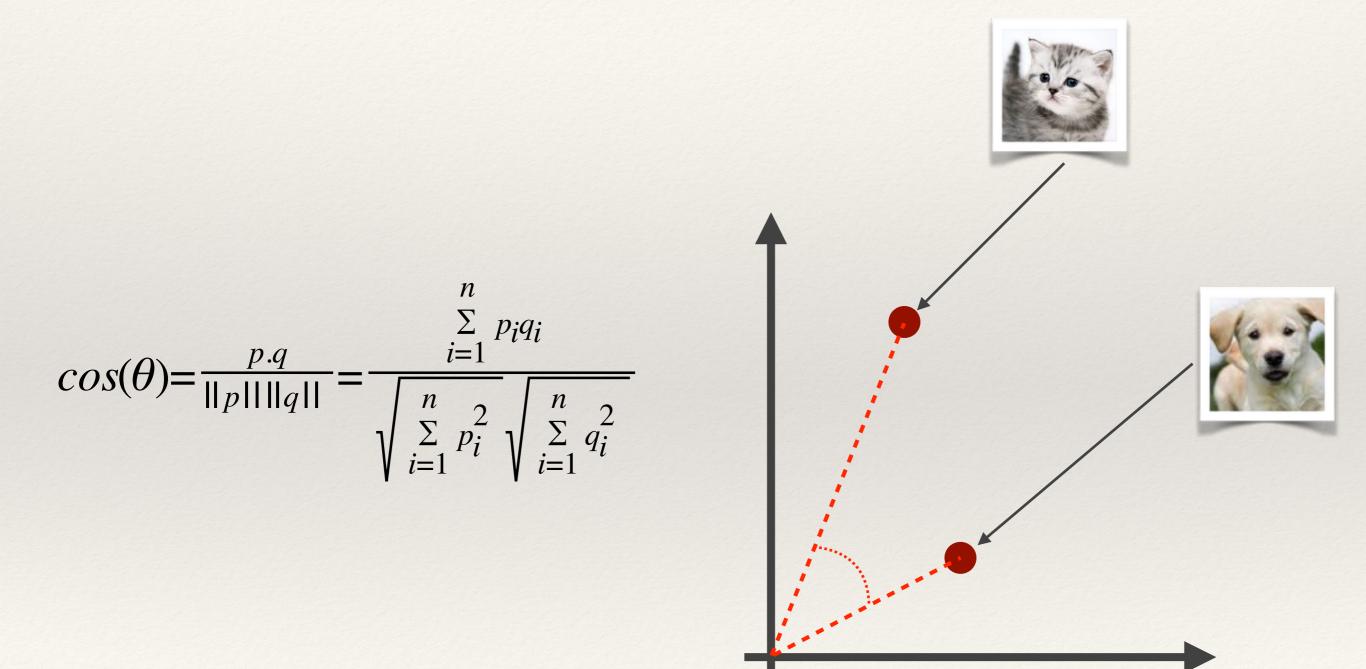
The Vector-space Model



Searching the VSM



Recap: Cosine Similarity



Recap: Cosine Similarity

If *p* and *q* are both high dimensional and sparse, then you're going spend a lot of time multiplying 0 by 0 and adding 0 to the accumulator n $p_i q_i$ $cos(\theta) = \frac{p.q}{\|p\|\|q\|}$

These can be pre-computed and stored!

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

...A map of words to lists of postings...

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13, doc2:4]
Telescope	[doc1:15]

A **posting** is a pair formed by a **document ID** and the **number of times** the specific word appeared in that document

Computing the Cosine Similarity

- For each word in the query, lookup the relevant postings list and accumulate similarities for only the documents seen in those postings lists
 - * much more efficient than fully comparing vectors...

Query: "Movie Star"

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Query: "Movie S	tar"
Accumulation ta	able:
doc2	10x1

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Query:	"Movie	Star"	
--------	--------	-------	--

Accumulation table:

doc2	$10 \times 1 + 4 \times 1$
doc1	13×1

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Query: "Movie Star"

Accumulation table:

doc2	$(10 \times 1 + 4 \times 1) / 14.04 = 0.997$
doc1	13×1 / 19.95 = 0.652
doc3	0

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Weighting the vectors

- * The number of times a word occurs in a document reflects the importance of that word in the document.
- Intuitions:
 - * A term that appears in many documents is not important: e.g., the, going, come, ...
 - * If a term is frequent in a document and rare across other documents, it is probably important in that document.

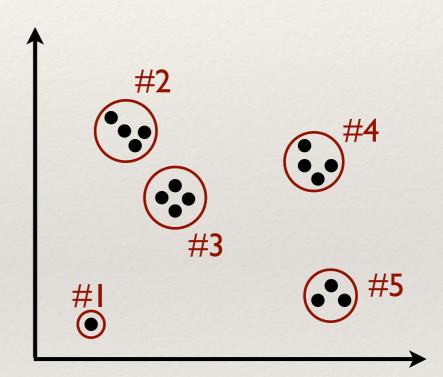
Possible weighting schemes

- Binary weights
 - * Only presence (1) or absence (0) of a term recorded in vector.
- * Raw frequency
 - * Frequency of occurrence of term in document included in vector.
- * TF-IDF
 - * Term frequency is the frequency count of a term in a document.
 - * Inverse document frequency (idf) provides high values for rare words and low values for common words.

Vector Quantisation

Learning a Vector Quantiser

- Vector quantisation is a lossy data compression technique.
- Given a set of vectors, a technique like K-Means clustering can be used to learn a fixed size set of representative vectors.
 - The representatives are the mean vector of each cluster in k-means
 - The set of representation
 vectors is called a codebook

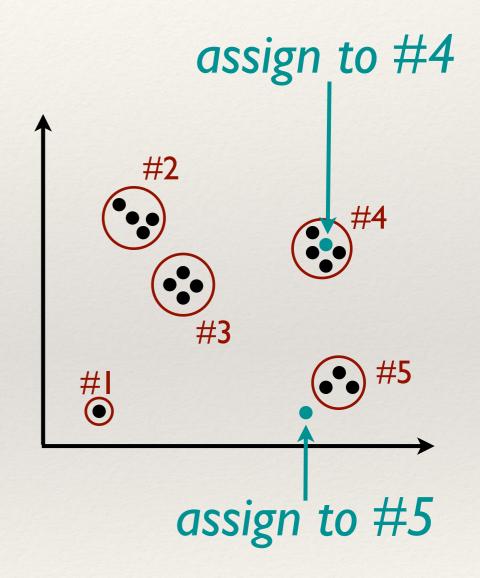


Vector Quantisation

 Vector quantisation is achieved by representing a vector by another approximate vector, which

is drawn from a pool of representative vectors.

 Each input vector is assigned to the "closest" vector from the pool.



Visual Words

SIFT Visual Words

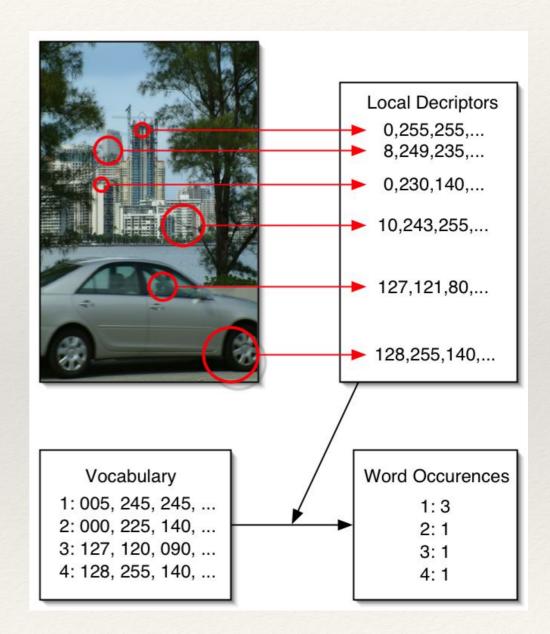
- * We can vector quantise SIFT descriptors (or any other local feature)
 - Each descriptor is replaced by a representative vector known as a visual word
 - * In essence the *visual word* describes a small image patch with a certain pattern of pixels
 - * In many ways the process of applying vector quantisation to local features is analogous to the process of stemming words.
 - * The codebook is the visual equivalent of a lexicon or vocabulary.

Bags of Visual Words

- Once we've quantised the local features into visual words, they can be put into a bag.
 - * This is a **Bag of Visual Words (BoVW)**
 - We're basically ignoring where in the image the local features came from (including ignoring scale)

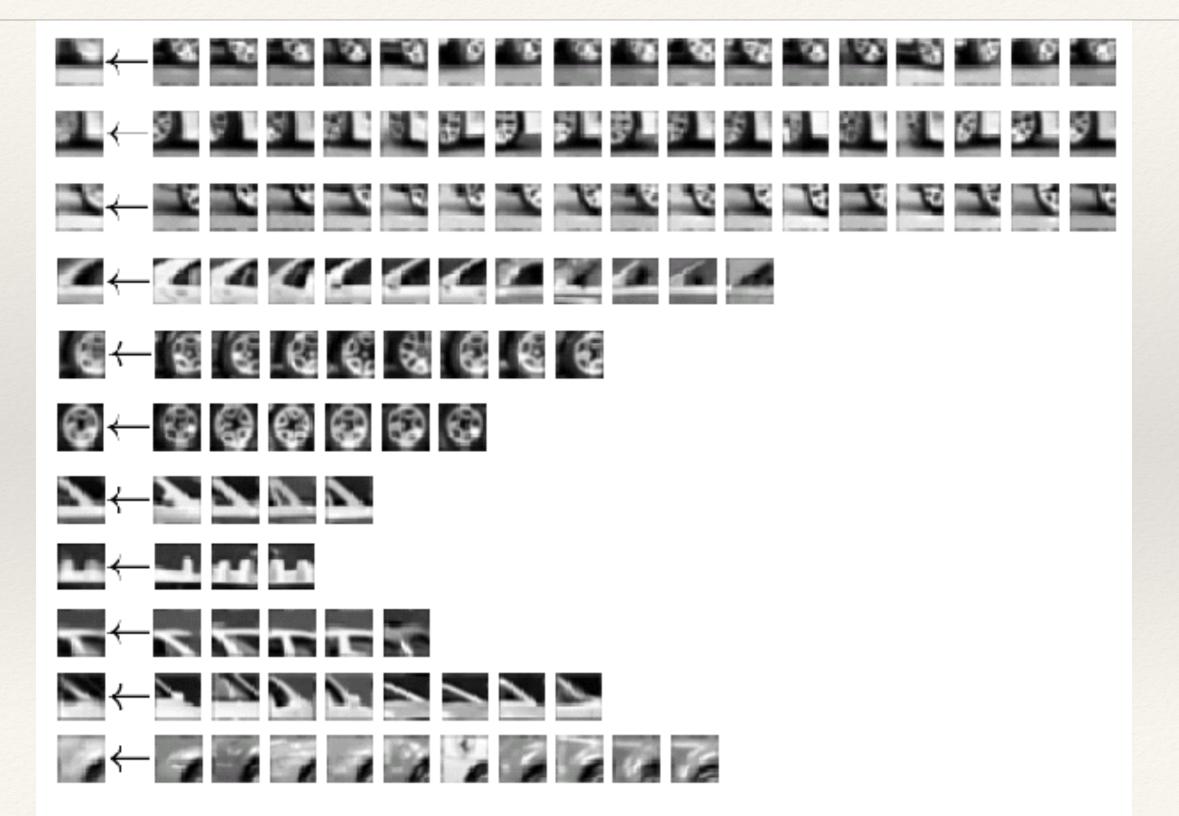
Histograms of Bags of Visual Words

- Like in the case of text, once we have a BoVW and knowledge of the complete vocabulary (the codebook) we can build histograms of visual word occurrences!
 - This is rather nice... it gives us a way of aggregating a variable number of local descriptors into a fixed length vector.
 - Useful for machine learning
 - But also allows us to apply techniques for text retrieval to images



Demo: SIFT visual word histogram

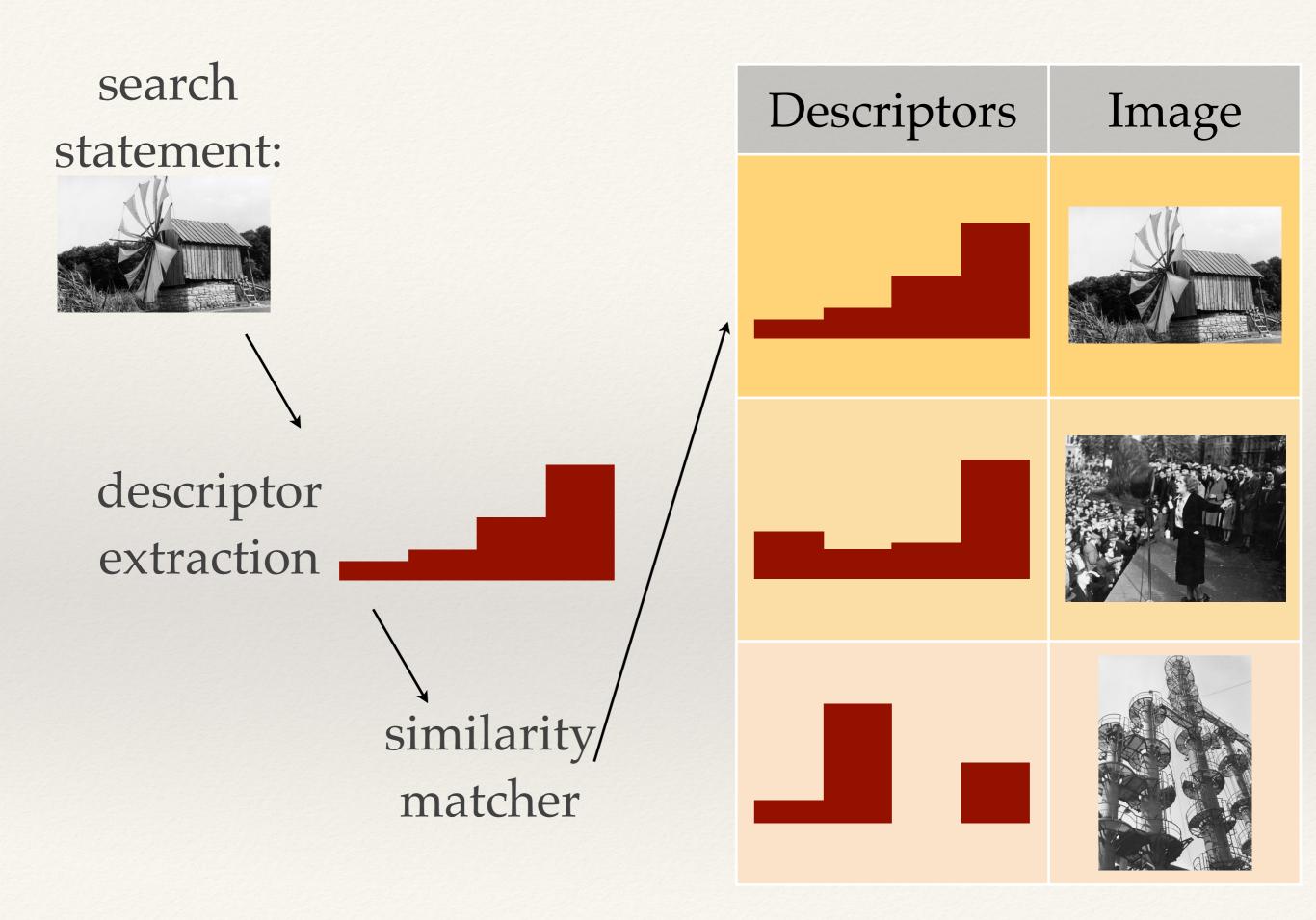
Visualising Visual Words



The effect of codebook size

- There is one key parameter in building visual words representations - the size of the vocabulary.
 - * Too small, and all vectors look the same
 - Not distinctive
 - Too big, and the same visual words might never appear across images
 - * Too distinctive

Content-based Image Retrieval



BoVW Retrieval

- * With the visual word representation, everything used for text retrieval can be applied directly to images
 - vector space model
 - cosine similarity
 - weighting schemes
 - inverted index

Optimal codebook size

- Inverted index only gives a performance gain if the vectors are sparse (you don't want to end up explicitly scoring all documents)
- Visual words also need to sufficiently distinctive to minimise mismatching
 - * Implies a very big codebook
 - Modern research systems often use 1 Million or more visual words for SIFT vectors

Problems with big codebooks

- * There's a slight problem...
 - Need to use k-means to learn 1 million clusters in 128 dimensions from 10's of millions of features
 - * Non-trivial!
 - * Vector quantisation has the same problems
 - Have to use approximate methods, like approximate k-d trees

Overall process for building a BoVW retrieval system

- Collect the corpus of images that are to be indexed and made searchable
- Extract local features from each image
- * Learn a *large* codebook from (a sample of) the features
- Vector quantise the features, and build BoVW representations for each image
- Construct an inverted index with the BoVW representations

Demo: A BoVW retrieval system for geo-location estimation

Current research

- * Lot of interest in content-based search for *massive* datasets
 - Two directions:
 - Hashing of local features
 - Tiny features (~16 bytes per image!)
 - Local features still used as the basis, but encoded in a different way to make dense features
 - * Still uses k-means, but much smaller k
 - * known as VLAD: Vector of Locally Aggregated Descriptors
 - VLAD descriptors then vector quantised using a "product quantiser"

Summary

- Effective and efficient text search can be achieved with bags of words, the vector-space model and inverted indexes.
- Vector-quantisation can be applied to local features, making them into visual words.
 - * Then you can apply all the same techniques used for text to make efficient retrieval systems!
 - * This is a good way of making highly scalable, effective and efficient content-based image retrieval systems