
COMP3204/COMP6223: Computer Vision

Image search and
Bags of Visual Words

Jonathon Hare
jsh2@ecs.soton.ac.uk

mailto:jsh2@ecs.soton.ac.uk

Text Information Retrieval

The bag data structure

❖ A bag is an unordered data
structure like a set, but which
unlike a set allows elements to
be inserted multiple times.
❖ sometimes called a multiset

or a counted set

Bag of Words

the quick brown
fox jumped over

the lazy dog

the

the

quick

fox

brown

dog

lazy

jumped

over

A document

The bag of words
describing the

document

Text processing (feature extraction)

qu
ic

k

br
ow

n

fo
x

ju
m

p

la
zi

ov
er

do
g

1 1 1 1 1 1 1

Tokenisation Stop-word Removal

Stemming/LemmatisationBag of Words

the quick brown
fox jumped over

the lazy dog

count

optional

The Vector-Space Model

❖ Conceptually simple:

❖ Model each document by a vector

❖ Model each query by a vector

❖ Assumption: documents that are “close together” in
space are similar in meaning.

❖ Use standard similarity measures to rank each
document to a query in terms of decreasing similarity

Bag of Words Vectors
❖ The lexicon or vocabulary is the set of all (processed) words across

all documents known to the system.

❖ We can create vectors for each document with as many dimensions
as there are words in the lexicon.

❖ Each word in the document’s bag of words contributes a count to
the corresponding element of the vector for that word.

❖ In essence, each vector is a histogram of the word occurrences
in the respective document.

❖ Vectors will have very high number of dimensions, but will
be very sparse.

The Vector-space Model
Star

Diet

Doc about astronomy
Doc about movie stars

Doc about mammal behavior

Searching the VSM
T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

Example:
D1 = 2T1 + 3T2 + 5T3
D2 = 3T1 + 7T2 + T3
Q = 0T1 + 0T2 + 2T3

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

• …cosine similarity

Recap: Cosine Similarity

Recap: Cosine Similarity
If p and q are both high dimensional and sparse,

then you’re going spend a lot of time multiplying 0
by 0 and adding 0 to the accumulator

These can be pre-computed and stored!

Inverted Indexes

Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

[doc2:10]

…A map of words to lists of postings…

Telescope [doc1:15]

Inverted Indexes
Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

[doc2:10]

A posting is a pair formed by a document ID and the number of times
the specific word appeared in that document

Telescope [doc1:15]

Computing the Cosine Similarity

❖ For each word in the query, lookup the relevant
postings list and accumulate similarities for only the
documents seen in those postings lists

❖ much more efficient than fully comparing vectors…

Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

[doc2:10]

Query: “Movie Star”

Telescope [doc1:15]

Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

Query: “Movie Star”

doc2 10x1

Accumulation table:

[doc2:10]

Telescope [doc1:15]

Aardvark

Astronomy

Diet

…

Movie

Star

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

Query: “Movie Star”

doc2 10⨉1 + 4⨉1

Accumulation table:

13⨉1doc1

[doc2:10]

Telescope [doc1:15]

Aardvark

Astronomy

Diet

…

Movie

Star

Telescope

[doc3:4]

[doc1:2]

[doc1:13; doc2:4]

[doc2:9; doc3:8]

Query: “Movie Star”

doc2 (10⨉1 + 4⨉1) / 14.04 = 0.997

Accumulation table:

13⨉1 / 19.95 = 0.652doc1

[doc2:10]

[doc1:15]0doc3

Weighting the vectors
❖ The number of times a word occurs in a document

reflects the importance of that word in the document.

❖ Intuitions:

❖ A term that appears in many documents is not
important: e.g., the, going, come, …

❖ If a term is frequent in a document and rare across
other documents, it is probably important in that
document.

Possible weighting schemes
❖ Binary weights

❖ Only presence (1) or absence (0) of a term recorded in vector.

❖ Raw frequency

❖ Frequency of occurrence of term in document included in vector.

❖ TF-IDF

❖ Term frequency is the frequency count of a term in a document.

❖ Inverse document frequency (idf) provides high values for rare
words and low values for common words.

Vector Quantisation

Learning a Vector Quantiser

❖ Vector quantisation is a lossy data
compression technique.

❖ Given a set of vectors, a technique
like K-Means clustering can be
used to learn a fixed size set  
of representative vectors.

❖ The representatives are the
mean vector of each cluster in
k-means

❖ The set of representation
vectors is called a codebook

#1

#2

#3

#4

#5

Vector Quantisation

❖ Vector quantisation is achieved
by representing a vector by
another approximate vector,
which  
is drawn from a pool of
representative vectors.
❖ Each input vector is assigned

to the “closest” vector from
the pool.

#1

#2

#3

#4

#5

assign to #5

assign to #4

Visual Words

SIFT Visual Words

❖ We can vector quantise SIFT descriptors (or any other local feature)

❖ Each descriptor is replaced by a representative vector known as
a visual word

❖ In essence the visual word describes a small image patch with
a certain pattern of pixels

❖ In many ways the process of applying vector quantisation to
local features is analogous to the process of stemming words.

❖ The codebook is the visual equivalent of a lexicon or vocabulary.

Bags of Visual Words

❖ Once we’ve quantised the local features into visual
words, they can be put into a bag.

❖ This is a Bag of Visual Words (BoVW)

❖ We’re basically ignoring where in the image the local
features came from (including ignoring scale)

Histograms of Bags of Visual Words
❖ Like in the case of text, once we

have a BoVW and knowledge of the
complete vocabulary (the codebook)
we can build histograms of visual
word occurrences!
❖ This is rather nice… it gives us a

way of aggregating a variable
number of local descriptors into a
fixed length vector.

❖ Useful for machine learning
❖ But also allows us to apply

techniques for text retrieval to
images

Demo: SIFT visual word histogram

Visualising Visual Words

The effect of codebook size

❖ There is one key parameter in building visual words
representations - the size of the vocabulary.

❖ Too small, and all vectors look the same

❖ Not distinctive

❖ Too big, and the same visual words might never
appear across images

❖ Too distinctive

Content-based Image Retrieval

Descriptors Imagesearch
statement:

similarity
matcher

descriptor
extraction

BoVW Retrieval

❖ With the visual word representation, everything used
for text retrieval can be applied directly to images

❖ vector space model

❖ cosine similarity

❖ weighting schemes

❖ inverted index

Optimal codebook size
❖ Inverted index only gives a performance gain if the

vectors are sparse (you don’t want to end up explicitly
scoring all documents)

❖ Visual words also need to sufficiently distinctive to
minimise mismatching

❖ Implies a very big codebook

❖ Modern research systems often use 1 Million or
more visual words for SIFT vectors

Problems with big codebooks

❖ There’s a slight problem…

❖ Need to use k-means to learn 1 million clusters in 128
dimensions from 10’s of millions of features

❖ Non-trivial!

❖ Vector quantisation has the same problems

❖ Have to use approximate methods, like
approximate k-d trees

Overall process for building a BoVW retrieval system

❖ Collect the corpus of images that are to be indexed and
made searchable

❖ Extract local features from each image

❖ Learn a large codebook from (a sample of) the features

❖ Vector quantise the features, and build BoVW
representations for each image

❖ Construct an inverted index with the BoVW
representations

Demo: A BoVW retrieval system for
geo-location estimation

Current research
❖ Lot of interest in content-based search for massive datasets

❖ Two directions:

❖ Hashing of local features

❖ Tiny features (~16 bytes per image!)

❖ Local features still used as the basis, but encoded in a
different way to make dense features

❖ Still uses k-means, but much smaller k

❖ known as VLAD: Vector of Locally Aggregated Descriptors

❖ VLAD descriptors then vector quantised using a
“product quantiser”

Summary
❖ Effective and efficient text search can be achieved with

bags of words, the vector-space model and inverted
indexes.

❖ Vector-quantisation can be applied to local features,
making them into visual words.

❖ Then you can apply all the same techniques used for text
to make efficient retrieval systems!

❖ This is a good way of making highly scalable, effective
and efficient content-based image retrieval systems

