Southampton

Computer Vision - A Retrospective:
Teaching machines to see




The grand challenge of
computer vision



Computer Vision research has always
been inspired by the way humans
“see” and perceive the world
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Setting the Scene:
A potted history of our understanding of:

Biological Vision
o Computation
e Machine Learning
o Computer Vision
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Circa AD 100 - 1000
Understanding of the visual system gross anatomy



CircaAD 1500
Foveal and peripheral vision

“The function of the human eye ... was described by a
large number of authors in a certain way. But | found it
to be completely different.”

—Leonardo Da Vinci




Late 1700’s - Early 1900’s

Advances in neuronal morphology
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McCulloch-Pitts Artificial Neuron
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> WV > 8 AND no inhibition

otherwise

excitatory input

inhibitory input

Warren
McCulloch AllW=1, g=2



1958 ®
Rosenblatt’s Perceptron
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General
region shapes

Exclusive-OR Classes with
problem meshed reqions
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1959

Receptive Fields of Single Neurons in the Cat’s Striate Cortex

Electrical signal
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Computer vision “summer project”

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt Lo use Oour summer wWorkers
effectively in the construction of a significant part of a visual system.

The particular task was chosen part%z because it can be segmented into
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1970
Is vision innate or acquireds
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1979
Convolutional Neural Networks & Neocognitron
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camera

Computer vision
fromthe late 80’s

camera



Classical approaches to computer
vision take the following form:

Feature
Extractor

result comes out Machine
Learning



Focus on “Feature Engineering”

Low-level features:
“Global features”; edges; corners

High-level features:
“Model-based features”; objects; @
feature combinations
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Recent approaches to computer
vision take the following form:

Learning
(Hl
techniques
fromthe
1960s-80s!)

result comes out
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Moore’s Law

SQURCE: RAY KURZWEIL, "THE SINCULARITY |€ NEAR: WHEN HUMANS TRANECEND BIOLOCY", P.€7, THE VIKING PRESS, 2006. DATAPQINTS BETWEEN 2000 AND

2012 REPRESENT BCA ESTIMATES.
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The new Moore’s Law: Computer’s

no longer get faster, just wider
TITAN




FACIAL RECOGNITION
D I . ° I . Deep-learning neural networks use layers of increasingly
e e p e a r n I n g. e a r n I n g complex rules to categorize complicated shapes such as faces.

layers of features

Layer 1: The
computer
identifies pixels
of light and dark.

Diagonal
Line
Layer 2: The
computer learns to
identify edges and
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Layer 3: The computer
learns to identify more
complex shapes and
objects.
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Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.
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Demo



Tricks’n Tips

e Lots of training data
needed...

« Use data
augmentation with
random transforms to
create more from less

« Network overfits...

 Use dropout when
learning



Transfer Learning

ConvNet trained on e.qg. ImageNet
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problem using the features
extracted from the net



Do computers dream of electric sheep?
Inceptionism and Algorithmic Pareidolia
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State-of-the-art computer vision:
Recurrent networks for image captioning

Vision Language A group of people
Deep CNN  Generating shopping at an
RNN outdoor market.

- Q There are many
vegetables at the
fruit stand.




“amanis climbing up arock face”



“amotorcycle racerisdrivingaturnona
racetrack”



“abasketball player inared uniformis trying to
score a playerintheair”



“amaninaredshirtis ridingabike onasnowy
hill”



ing off a snowy hill”

IS jump

“asurfer



Questions?



Mark & I hope you have enjoyed learning about
Computer Vision this semester

We’ll meet after Christmas for arevision lecture
(probably in the Tuesday slot - I’ll be in touch to confirm)

If you’ve enjoyed this module, you mightalso like
Advanced Computer Vision (Mark), Advanced
Machine Learning (Adam) & Data Mining (me)



