FOURIER TRANSFORM AND INVERSE FOURIER TRANSFORM

XIAOHAO CAI*

This short document will provide a few different forms of the Fourier transform and their inverse transforms, including a brief proof of how to get them.

1. Dirac delta function. Let $f: \mathbb{R} \rightarrow \mathbb{C}$. Let $\delta(\cdot)$ represent the Dirac delta function. The integral of the time-delayed Dirac delta function is

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(t) \delta(t-T) d t=f(T) \tag{1.1}
\end{equation*}
$$

In particular, the Dirac delta function is an even distribution, in the sense that

$$
\begin{equation*}
\delta(-x)=\delta(x) \tag{1.2}
\end{equation*}
$$

The Cauchy equation can be represented as

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} \delta(x-a) f(a) d a \tag{1.3}
\end{equation*}
$$

where the delta function is represented as

$$
\begin{equation*}
\delta(x-a)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j p(x-a)} d p \tag{1.4}
\end{equation*}
$$

where j is the imaginary unit. Equation (1.4) is also equivalent to

$$
\begin{equation*}
\delta(x-a)=\int_{-\infty}^{\infty} e^{j 2 \pi p(x-a)} d p \tag{1.5}
\end{equation*}
$$

2. Fourier transform and its inverse transform. Let \hat{f} be the Fourier transform of function f. Then one common convention defining the Fourier transform and its inverse is

$$
\begin{align*}
& \hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi \xi x} d x \tag{2.1}\\
& f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{j 2 \pi \xi x} d \xi \tag{2.2}
\end{align*}
$$

A brief proof from the Fourier transform $\sqrt{2.1}$ to (2.2) is given below. The proof from the inverse Fourier transform 2.2 to 2.1 is analogous.

Proof. Equation 2.1 is equivalent to

$$
\begin{align*}
\int_{-\infty}^{\infty} \hat{f}(\xi) e^{j 2 \pi \xi y} d \xi & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi \xi x} d x\right) e^{j 2 \pi \xi y} d \xi \tag{2.3}\\
& =\int_{-\infty}^{\infty} f(x)\left(\int_{-\infty}^{\infty} e^{j 2 \pi \xi(y-x)} d \xi\right) d x \tag{2.4}\\
& \left.=\int_{-\infty}^{\infty} f(x) \delta(y-x) d x \quad \ldots . \text { (using (1.5) }\right) \tag{2.5}\\
& =f(y) \quad \ldots .(\text { using (1.2) and (1.3) }), \tag{2.6}
\end{align*}
$$

[^0]which is 2.2 after replacing the variable y by x.
Another form defining the Fourier transform and its inverse is
\[

$$
\begin{align*}
& \hat{f}(w)=\int_{-\infty}^{\infty} f(x) e^{-j w x} d x \tag{2.7}\\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(w) e^{j w x} d w \tag{2.8}
\end{align*}
$$
\]

A brief proof from the Fourier transform (2.7) to 2.8 is given below.
Proof. Equation 2.7 is equivalent to

$$
\begin{align*}
\int_{-\infty}^{\infty} \hat{f}(w) e^{j w y} d w & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(x) e^{-j w x} d x\right) e^{j w y} d w \tag{2.9}\\
& =\int_{-\infty}^{\infty} f(x)\left(\int_{-\infty}^{\infty} e^{j w(y-x)} d w\right) d x \tag{2.10}\\
& =2 \pi \int_{-\infty}^{\infty} f(x) \delta(y-x) d x \quad \ldots . \text { (using (1.4) } \tag{2.11}\\
& =2 \pi f(y) \quad \ldots .(\text { using (1.2) and (1.3), } \tag{2.12}
\end{align*}
$$

which is 2.8 after replacing the variable y by x and timing $1 / 2 \pi$ from both sides. \square
Using the above proof, we can easily get other forms of the Fourier transform and the inverse, e.g.

$$
\begin{align*}
\hat{f}(w) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-j w x} d x \tag{2.13}\\
f(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{j w x} d w \tag{2.14}
\end{align*}
$$

3. How to remember the transforms. We can regard $\left\{e^{-j 2 \pi \xi x}\right\}$ or $\left\{e^{-j w x}\right\}$ with respect to ξ or $w \in(-\infty, \infty)$ as basis functions in the frequency domain, and with respect to x in the image/time space. Then the standard theorem in linear algebra tells us that any function f (or its transform \hat{f}) can be represented by these basis functions.

A more detailed reading can be found from

- WIkIPEDIA https://en.wikipedia.org/wiki/Fourier_transform,
- WolframMathWorld https://mathworld.wolfram.com/FourierTransform.html, - and the references therein.

[^0]: *ECS, University of Southampton. Email: x.cai@soton.ac.uk.

