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Where is feature extraction used these days?
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1. Where is computer vision going?
2. Where and how is it used?



Where is computer vision used?

What you see depends on the viewpoint you take

Academics,

Industr , .
Y but increasingly everyone
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(a) dataset of images classified by gender (d) (e) male
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Classifying People by Gender [Martinho-Corbishley18]




On learning

Machine Learning
Image Features Classifier Result

Elizabeth
Hurley

Deep Learning

Main Approaches to Learning from Data
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Basis of a Deep Neural Network
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Trained Example Neural Network




Alexnet architecture
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VGG architecture
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Resnet architecture
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Features at Different Levels in Deep Learning
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(b)

ground truth

(©)

by interpolation | (d) by DRNN

(e) by LFSR

Lightfield Image Resizing [Gull8]
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(a) image with added noise

(b) denoising by transform
domain

(c¢) denoising by modified
VGG

Image Denoising [Zhang17]




(a) some of the top activations (b) semantic segmentation

Object Extraction by Region-Based Convolutional Networks [Girshick16]
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Motivation: Murder case in Australia 2014
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Cases, latest rvestgasons

Murdered jeweller Dermot
O'Toole's widow Bridget says evald Sun
her husband would be alive if i o Reuremen
his killer Gavin Perrywasn't | [ il ot
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Bridget OToole has descirbed the impact of her husband's murder to the court.

Bouchrika, Nixon, Carter, J. Forensic
16/200 Science 2011, and Eusipco 2010




Automating eye witnhess statements

Eyewitness statement
“24 year old male average height

wearing shirt”

Database of |mages

Generate descriptions

Generate description

Image of crime

PN /
/ N
Subject Gender Age Height \ Nose W
? M 24 171 / 2.4
N\ /
( /\
Subject Gender Age Height Nose W
123456 25 / 172 \ 2.3 Shirt
123457 36 \ 156 / 2.2 Blouse
123458 58 182 1.2 T shirt

Database of
descriptions



Gender estimation on PETA

* Gender?
Subject
PETA
image
A A
PETA
label E B. Female

Martinho-Corbishley, Nixon

and Carter, Proc. BTAS 2016



Gait-based Age Estimation using a Whole-
generation Gait Database

* How old is he/she?

Subject 1 2 3

Gait

Age A. 4 vyears old

B. 34 years old

C. 82 yearsold




Traits and terms

Body Features

* Global
« Based on whole body description stability e
. * Ethnicity
analysis by MaclLeod et al. +  Skin Colour
. . . * Age

« Features showing consistency by different « Body Shape
viewers looking at the same subjects . \FAi/glfrE
. . . N * elg t

« Mostly comprised of 5 point qualitative * Muscle Build

* Height

measures

<_e.g. very fat, fat, average, thin, very thin
This changed
* Most likely candidate for fusion with gait

* In biometrics, gender and sex are
synonymous. ‘Assigned sex’ might be
preferred to ‘gender’ in general use.

* Head

* Proportions

* Shoulder Shape

* Chest Size

* Hipsize

* Leg/Arm Length

* Leg/Arm Thickness

* Hair Colour
* Hair Length
* Facial Hair Colour/Length
* Neck Length/Thickness

Samangooei, Guo and
Nixon, IEEE BTAS 2008




Human descriptions: recognition capability
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Samangooei and Nixon,
IEEE BTAS 2008



Comparative human descriptions

Please compare the subject n the kower video 1o the subject m the top video
For example if the subject iz the bottom video is taller thas the subjec

« Compare one subject’s attribute with
another’s

Attribete Ansotation

) ) Age Ctdwe =

* Infer continuous relative measurements thorm o L DB W s
Hax Colowr Same ;

Subgects have roughly the SAME haw colour
Hair Leagth Losger  [3]
Bottom subyect has LONGER hawr than the top

Heght Taller ~l
Bottom subpect o TALLER thans the top
Figure Same 3

Submcts both have roughly the SANE figure
Neck Length Same ]
Subpcts have roughly the SAME langth neck
Neck Thickness  Thanee -l

Bomom subpct has » THIRNER neck than the top

Shoulder Shape  Same I+
Subyects have roughly the SAME shoulder shape
Chest Same -

Subgects have roughly the SAME se chest
Am Lesgth Longee [+
Bottom subject has a LONGER arms than the top

Reid and Nixon, |IEEE ICDP
2011, TPAMI 2014



Height correlation (with time)
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Reid and Nixon, |IEEE ICDP
2011, TPAMI 2014




Pairwise similarity comparisons on PETA
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Ranking

Relative 0.18 0.28 0.68 0.86 0.88 Binary
Similarity 0.17 0.18 0.47 0.89 0.89 Similarity
Gender distribution not binary
Can measu re CO nfidence Martlnho-CorbIShIey, Nixon and

Carter, BTAS 2016



Conventional attribute-based analysis

I

Image to Text
Matching

Binary
Representation

= Female?

Martinho-Corbishley, Nixon
and Carter, IEEE TPAMI
2019
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Male
Possibly Male
Obscured Cant See
Possibly Female
Female

Gender
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Analysing gender (??!!)

e Gender?
Subject 1 2 3
A. Male
el B. Female
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Caucasian

Possibly Caucasian

Midd|e Eastern Central Asian Other
East Asian

Obscured Cant See

Ethnicity
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Martinho-Corbishley, Nixon and

Carter, IEEE TPAMI 2019



Takeaway time

1 — computer vision works and has a great
future

2 — big difference between hand crafted and
deep learning

3 — some parts are the same (group operators/
templates)

4 — what will happen in the future?
Jon Hare will happen in the future!
Beyond that, | can only speculate. Enjoy!




