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What are their pros and cons?
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1. Biometrics account for a large portion
in computer vision

2. Some data-driven and model-driven methods
in computer vision
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Different Types of Biometrics
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ldentifying people
by their gait

Prof.
SOUTHAMPTON UNIVERSITY  asciN A

;\;

As a biometric, gait is available at a distance when other biometrics

are obscured or at too low resolution
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Many gait representations possible e

Recognising people from the motion of the whole body

silhouette flow edges symmetry acceleration

MS Nixon, T Tan, R Chellappa,

Springer, 2005
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Model-based recognition e
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Hand crafted then; deep learning now e
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SE Bekhouche, A Chergui, A Hadid...,

ICIP 2020

Detection &
Segmentation
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DEEP
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MACHINE LEARNING BASED
ON ARTIFICIAL NEURAL NETWORKS

Before After

and many
more ...
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“DATAIS THE NEW GOLD"

https://www.civilsdaily.com/burning-issue-data-the-new-gold/
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Gait biometrics databases soot et

Laboratory
e Southampton 3D and 2D
e CASIA (+ multiview, thermal)
® Osaka OU-ISIR (+ multiview)
‘Real’ World
® HumaniD

e Southampton
e CASIA
+ accelerometer, footfall, medical

M Okumura, Y Makihara, Y
Yagi, IEEE TIFS 2012
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What changes regarding datasets? e

Footwear

Many covariates can affect walking
style
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Domain shift
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Load Carriage

Noisy annotation

Walking Surface and Setting

and more ...
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A Microsoft Al tool is helping to speed up cancer treatment — and Med ICaI Imagl ng
Addenbrooke’s will be the first hospital in the world to use it Wlth Al

December 9, 2020 | Microsoft reporter

Hon

Explore ~ | Times Radio

Inner Eye Al identifies tumours to
speed up treatment of cancer

Katie Gibbons

Monday January 112021, 12.01am,
The Times

The Inner Eye software is the result of an eight-year project with Microsoft and Addenbrooke's hospital
ALamy

A hospital in Cambridge is the first to use artificial intelligence technology
developed by Microsoft to treat cancer patients faster, helping to cut the
treatment backlog and save lives.

https://news.microsoft.com/en-gh/2020/12/09/a-microsoft-ai-tool-is-helping-to-speed-up-cancer-treatment-and-addenbrookes-will-be-the-first-hospital-in-the-world-to-use-it/
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Alba | Local News

Al technology used to track asbestos
cancer tumours

By Laura Goodwin
BBC Scotland Innovations Correspondent

Medical imaging
with Al

https://www.bbc.co.uk/news/uk-scotland-
56734407
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programmes:

BMJ 2021 ;374 d
Cite this as: BMJ 2
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Abstract

Conclusions

Current evidence on the use of Al systems in
breast cancer screening is a long way from
having the quality and quantity required for
its implementation into clinical practice. Well
designed comparative test accuracy studies,
randomised controlled trials, and cohort I,
studies in large screening populations are
needed which evaluate commercially
available Al systems in combination with
radiologists. Such studies will enable an

1 . 1 5 r . 2 ® 1 1 . . P |

https://www.bmj.com/content/374/bmj.n1872
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Output

Input > Black Box

Internal behavior of the code is unknown
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What it means to look inside the black box

Explainability
Understanding reasoning
behind each decision

4

prsi s Provability

Transparency --- &
¢ Mathematical certainty
¢

|

Understanding of

AI model decision making behind decisions

Source: PwC
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Research Briefing

Interpretable machine learning

Published Tuesday, 06 October, 2020

POSTnote Crime and justice Digital tech Health and social care Transport and infrastructure

8 Lorna Christie

Machine learning (ML, a type of artificial intelligence) is increasingly being used to support decision making in a
variety of applications including recruitment and clinical diagnoses. While ML has many advantages, there are

concerns that in some cases it may not be possible to explain N18 o | ord N e 0on A alled
This POSTnote gives an overview of ML and its role in decision- A . ‘ slligible to deve
understanding how a complex ML system has reached its outp
. : . . . . eguiato 2CO ended alt dn A
making ML easier to interpret. It also gives a brief overview of
A . A @ . A . A . . A C

systems more accountable.
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Model-driven Active Contours S B
Methods

International Journal of Computer Vision, 321-331 (1988)
© 1987 Kluwer Academic Publishers, Boston, Manufactured in The Netherlands

Snakes: Active Contour Models

MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS . o .
Schlumberger Palo Alto Research, 3340 Hillview Ave., Palo Alto, CA 94304 [Cred |t: Wi k| ped |a]
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IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 2, FEBRUARY 2001

Active Contours Without Edges

Tony F. Chan, Member, I[EEE, and Luminita A. Vese

Abstract—In this paper, we propose a new model for active con-
tours to detect objects in a given image, based on techniques of
curve evolution, Mumford—Shah functional for segmentation and
level sets. Our model can detect objects whose boundaries are not
necessarily defined by gradient. We minimize an energy which can
be seen as a particular case of the minimal partition problem. In
the level set formulation, the problem becomes a “mean-curvature
flow”-like evolving the active contour, which will stop on the de-
sired boundary. However, the stopping term does not depend on
the gradient of the image, as in the I active r model
but is instead related to a particular segmentation of the image. We
will give a numerical algorithm using finite differences. Finally, we
will present various experimental results and in particular some

the image (the external energy). Observe that, by minimizing
the energy (1), we are trying to locate the curve at the points
of maxima |Vuy|, acting as an edge-detector, while keeping a
smoothness in the curve (object boundary).

A general edge-detector can be defined by a positive and de-
creasing function g, depending on the gradient of the image v,
such that

lim g(z) =0.

For instance
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Models proposed in our work, e.g.:

> miny { 3y — Ax|Z + [ W1 }
> ming { 31 — Agl + 41 Vgl + 1 Vel }

> 'ud)(f, Ag) + )\\U(g, Ui, Ci) + Zf(zl fQ IVU,'l
st S8 ui(x) =1, ui(x) € {0,1}

> minyes {31 — Bull3 + N[ Vullo |

> miny {D[T(¢), R] + aIIAwllé}

Convex optimisation
algorithms

» ADMM
» Primal-dual
» Split-Bregman

» Augmented
Lagrangian

Sparse regularizations

> [ llos [+ llzs [+ ll2
» with V, A, W
» W: Wavelet transform
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T-ROF ( Thresholded-ROF ) [SISC, '19; EMMCVPR, '13] Southampt_on

X. Cai, R. Chan, C.-B. Schénlieb and Computer Science
G. Steidl, T. Zeng

Image Restoration Image Segmentation

ROF model thresholding Chan-Vese model
(1992, citation > 15,700) ~ "~~~ """ """~ ~ (2001, citation > 12,600)
grzn.in {Per(Ql;Q) +
. u B 5 ivmj

uerlrs]\'/r}sz){TV(u) + 5 Jolf — u)dx}, AYiso Jo,(mi — £)? dx},

TV/(u): total variation of u Q = Qo +

Per(€Q;;Q): perimeter of set Q;

Theorem

(Relation between ROF and Chan-Vese model) Let u* € BV(2) solve the ROF
model. For given 0 < my < my <1, let ¥ := {x € Q: u*(x) > ™F™} fulfill

0 < |X| < |Q|. Then ¥ is a minimizer of the Chan-Vese model for \ := m’i—mj

and fixed mo, my. In particular, (¥, mo, m1) is a partial minimizer of the
Chan-Vese model if my = means(2\X) and m; = means(X).
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Given image

Method: SLaT
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Disparity and optical flow M. Nikolova, * and Computer Scence
G. Steidl, M. Storath
Algorithm for ,
NP-hard problem
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C.-B. Schonlieb, et al.

Hyperspectral LiDAR

Ours



Wavelet-based
algorithm

\

First
segmentation paper
on the sphere

Spherical image

PR, '19

X. Cai, et al.
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3D image — tubular SSVM, 12 e e
X. Cai, et al.
Wavelet-based
algorithm

\

Data provided:
Prof. S. Morigi
Prof. F. Sgallari

Uni. of Bologna
Italy

Anisotropic PDE
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Planning day kVCT Treatment day kVCT

http://www.componc
org/research/voxtox
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Recent: models leveraging deep learning

Models proposed in our work, e.g.:

> miny { 3y — Ax|Z + [ W1 }
> ming { 31 — Agl + 41 Vgl + 1 Vel }

> 'ud)(f, Ag) + )\\U(g, Ui, Ci) + Zf(zl fQ lVUil
st S8 ui(x) =1, ui(x) € {0,1}

> minyes {31 — Bull3 + N[ Vullo |

> miny {D[T(«p), R] + aIIAwII%}

Southampton
Convex optimisation
algorithms
» ADMM
» Primal-dual

» Split-Bregman

» Augmented
Lagrangian

Sparse regularizations

> [ llos [+ llzs [+ ll2
» with V, A, W
» W: Wavelet transform
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1. Computer vision works and has a great future
2. Big difference between data-driven and model-driven
3. Gap is becoming smaller
4. What will happen in the future?
We have more to learn ...



