Lecture 1 Eye and Human Vision

COMP3204 Computer Vision

Is human vision a good model for computer vision?

Department of Electronics and Computer Science Southampton

School of Electronics and Computer Science

Content

- 1. Is human vision a good model for computer vision?
- 2. How does human vision work (and how does it fail)?
- 3. Software languages & associated literature

Modelling the eye in three parts

Each is not fully understood, especially the brain

Human eye

Evolved for survival

Function of the eye is to form an image on the retina (on fovea)

The lens is shaped, rather than moved

Image is transmitted via optic nerve

Optics

Your brain must invert the image

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rfreye.html

Sensors

There must be a lot! Cones (10⁷) and rods (10⁸) Cones – colour; rods – greylevel photopic scotopic

Cones come in three types

- 1. S short wavelength (blue)
- 2. M medium wavelength (green)
- 3. L long wavelength (red)

Insufficient bandwidth of optic nerve

implies coding

Rod and cone densities

No sensors on blind spot Most cones on fovea Rods elsewhere

http://webvision.med.utah.edu/imageswv/Ostergr.jpeg

http://webvision.med.utah.edu/wpcontent/uploads/2011/03/Spectrum.jpeg

Relative absorbance

Spectral response

Spectral response

Spectral response

Blue response (S sensors) is poor Green response (M sensors) dominates Red response (L sensors) close to heat

Spectral response

Section of retina

http://www.rci.rutgers.edu/~uzwiak/NBSummer15/NBSummerLect4.html

Neural processing

Sensor information must be combined

Note Weber's law

Where are we?

Mach bands

Mach bands are **not** in the image: your vision introduces them

Result of brightness adaption

How human vision uses edges

The human eye needs training and can be deceived

(b) Pacmen?

Static illusions

Measurement needs comparison

(a) Zollner

(b) Ebbinghaus

Benham's disk

EATURE EXTRACT

Illusions are a consequence of complex function

Main points so far

- 1 human eye can be modelled in three sections
- 2 it works very well
- 3 but it can be deceived
- 4 is it a good model for computer vision?

Next up, how images are formed

Human to Computer Vision

Software languages

Matlab

Python

Associated literatures

References of each Chapter

Other books:

- CVOnline: homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
- Digital Signal Processing: dspguide.com

Journals, magazines and conferences:

- IEEE, SIAM, Springer, Elsevier, IET
- CVPR, ICCV, ECCV, etc.

Computer Vision News: https://www.rsipvision.com/computer-vision-news/

