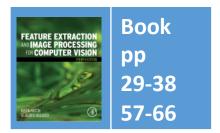
Lecture 2 Image Formation

COMP3204 Computer Vision

What is inside an image?



Department of Electronics and Computer Science

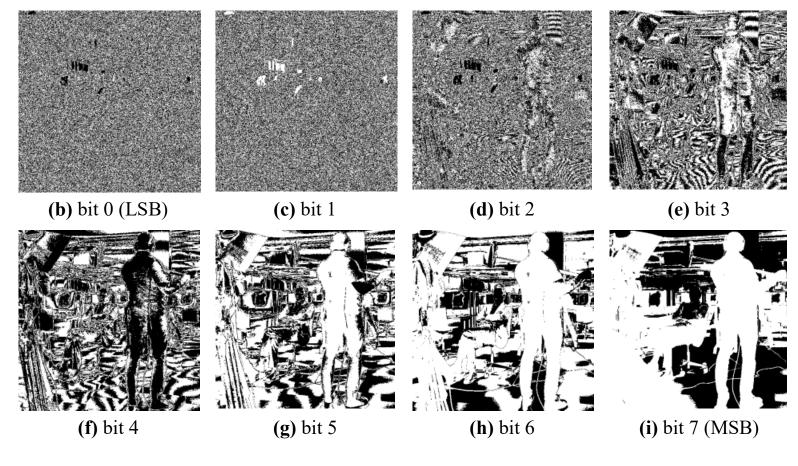
Content

- 1. How is an image formed?
- 2. What restrictions are there on image formation?
- 3. Go to a different space Fourier

Decomposing an image into its bits

The Most Significant Bit carries the most information where as bit 0 is noise

(a) original image



... and here, bit 4 is the lighting

Effects of differing image resolution

(a) 64×64

(b) 128×128

(c) 256×256

Low resolution lose information but *N*×*N* points implies much storage

How do we choose an appropriate value for *N*?

Joseph Fourier

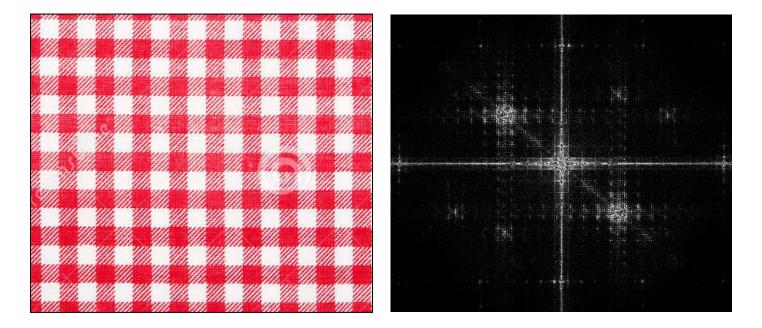
- Any periodic function is the result of adding up sine and cosine waves of different frequencies
- Sceptical? Yeah, so were Lagrange and Laplace. Good company eh?
- "Fourier's treatise is one of the very few scientific books that can never be rendered antiquated by the progress of science" James Clerk Maxwell 1878

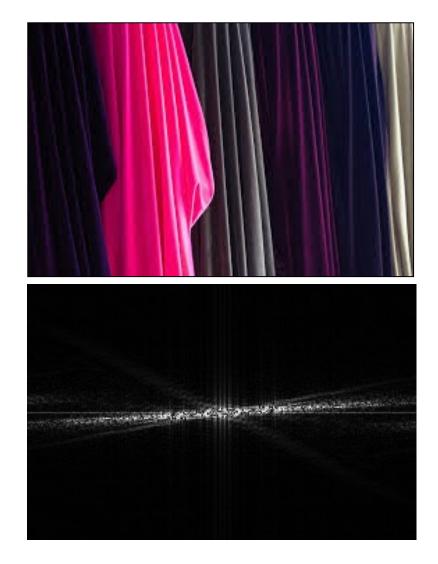
What are 2D waves?

2D waves are along x and y axes simultaneously

and in terms of frequency

• N.b. colour immaterial (just for visuals)





Step up Fourier...

$$Fp(f) = \mathcal{F}(p(t)) = \int_{-\infty}^{\infty} p(t)e^{-jft}dt$$

Whoa! Where from....

First, we have that the FT is a function a() of a time-variant signal p(t)

The Fourier transform is then

The transform is a function of frequency so

 ${\mathcal F}$ stands for the Fourier transform so

The function a() is actually an integral

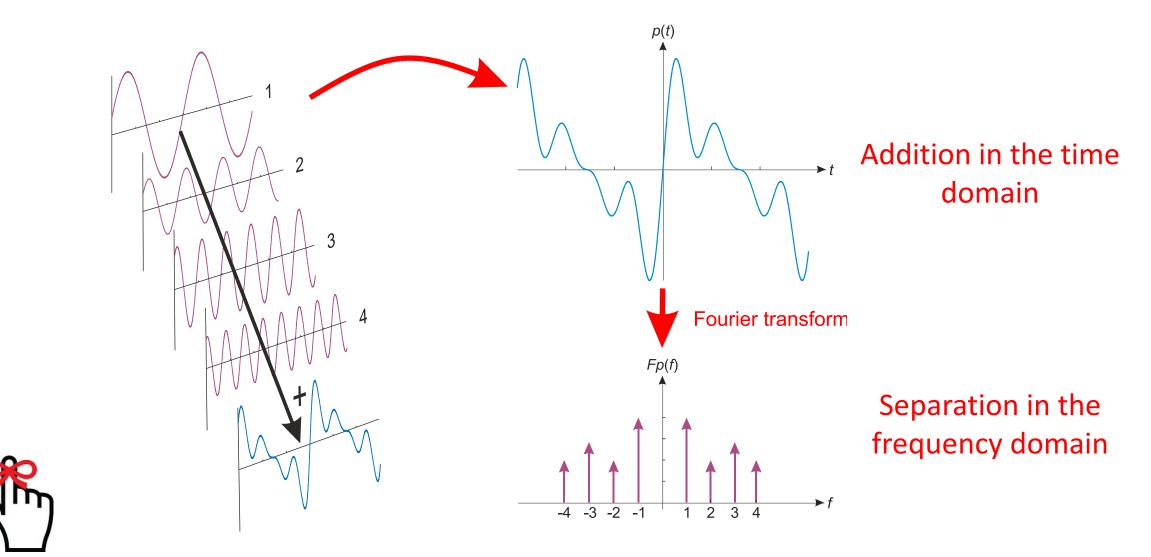
cas(t) describes cosine and sine waves, so

hen Fp = a(p(t))n of frequency so Fp(f) = a(p(t))ransform so $Fp(f) = \mathcal{F}(p(t)) = a(p(t))$ hally an integral $Fp(f) = \mathcal{F}(p(t)) = \int_{-\infty}^{\infty} p(t) \operatorname{cas}(t) dt$ hd sine waves, so $Fp(f) = \mathcal{F}(p(t)) = \int_{-\infty}^{\infty} p(t) e^{-jft} dt$ where cas = 'cos and sin' since $e^{-jft} = \cos(ft) - j \sin(ft)$,

where *j* is the complex number $j = \sqrt{-1}$

What does the Fourier transform do?

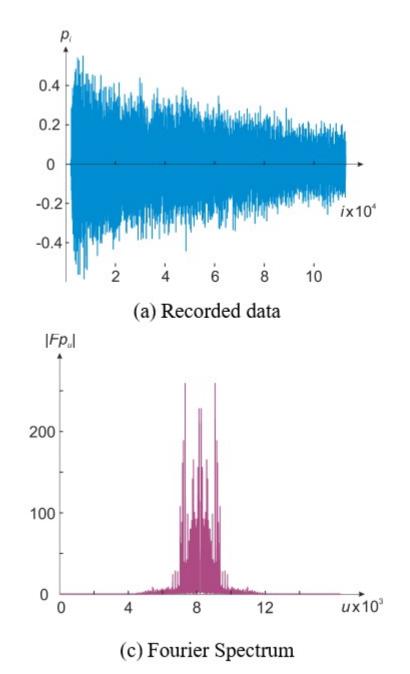
FEATURE EXTRACTIO

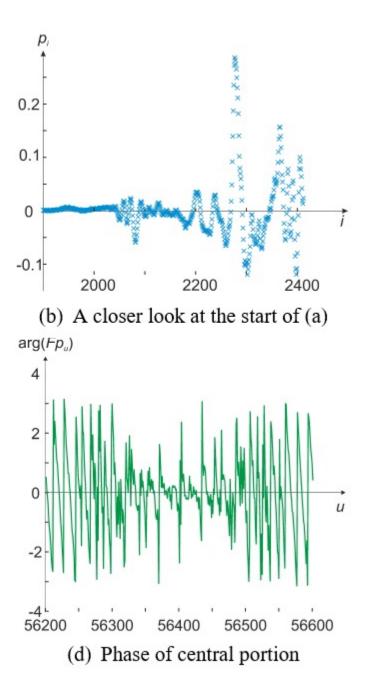


Hard day?

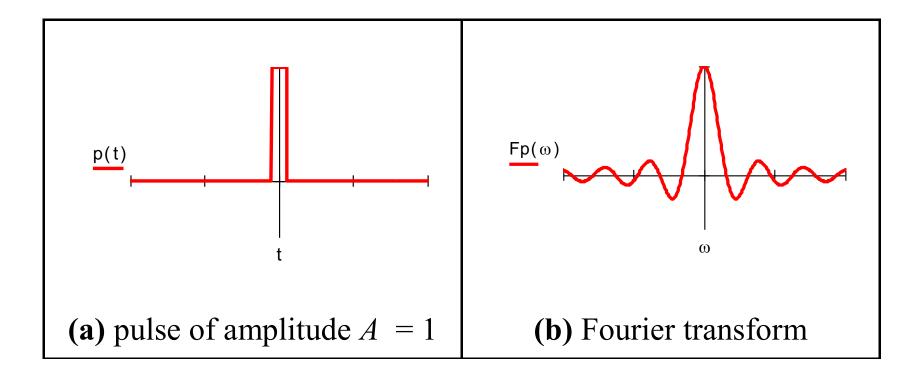
Let's see the Fourier transform of the Hard Day's night chord

Apparently, the piano is more dominant than expected





A rectangular pulse and its Fourier transform



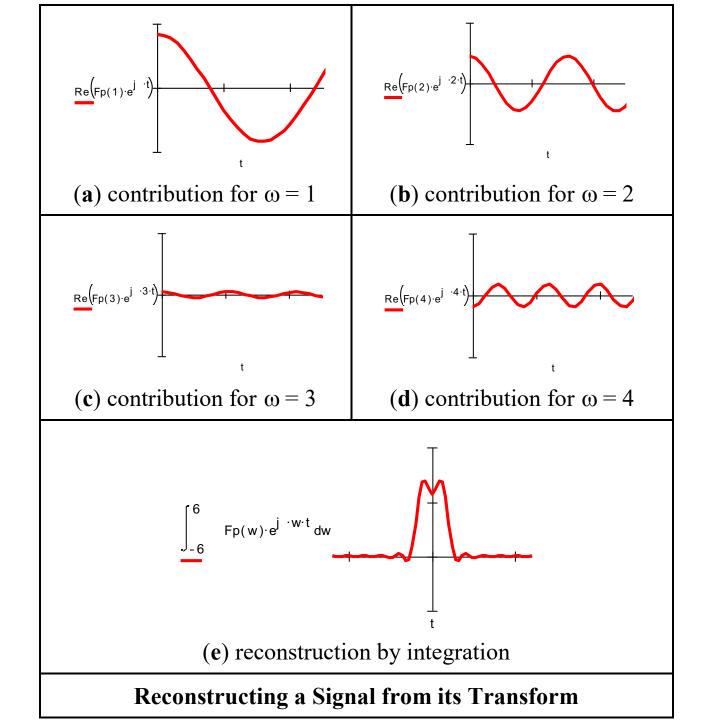
• Pulse
$$p(t) = \begin{vmatrix} A & \text{if } -T/2 \le t \le T/2 \\ 0 & \text{otherwise} \end{vmatrix}$$

• Use Fourier $Fp(\omega) = \int_{-T/2}^{T/2} Ae^{-j\omega t} dt$
• Evaluate integral $Fp(\omega) = -\frac{Ae^{-j\omega T/2} - Ae^{j\omega T/2}}{j\omega}$
• And get result $Fp(\omega) = \begin{vmatrix} \frac{2A}{\omega} \sin\left(\frac{\omega T}{2}\right) & \text{if } \omega \ne 0 \\ AT & \text{if } \omega = 0 \end{vmatrix}$

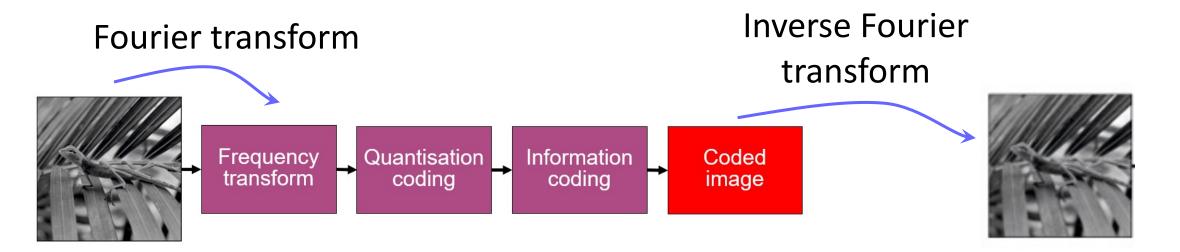
æ

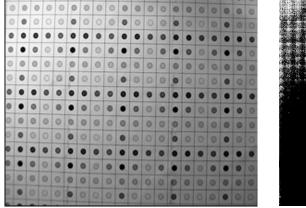
Reconstructing a signal from its Fourier transform

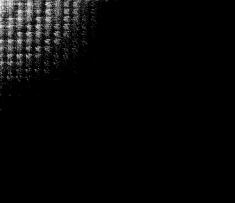
FEATURE EXTRACTION MADE MAGE PROCESSING FOR COMPUTER VISION TO COMPUTER VISION TO COMPUTER VISION This is the inverse Fourier transform



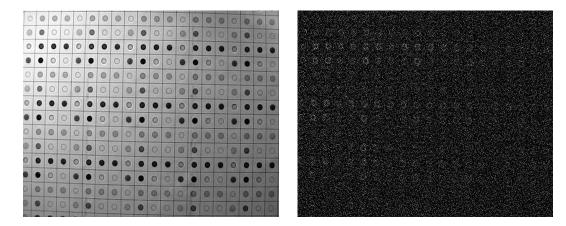
Inverse Fourier transform is used for reconstruction







5% of transform components



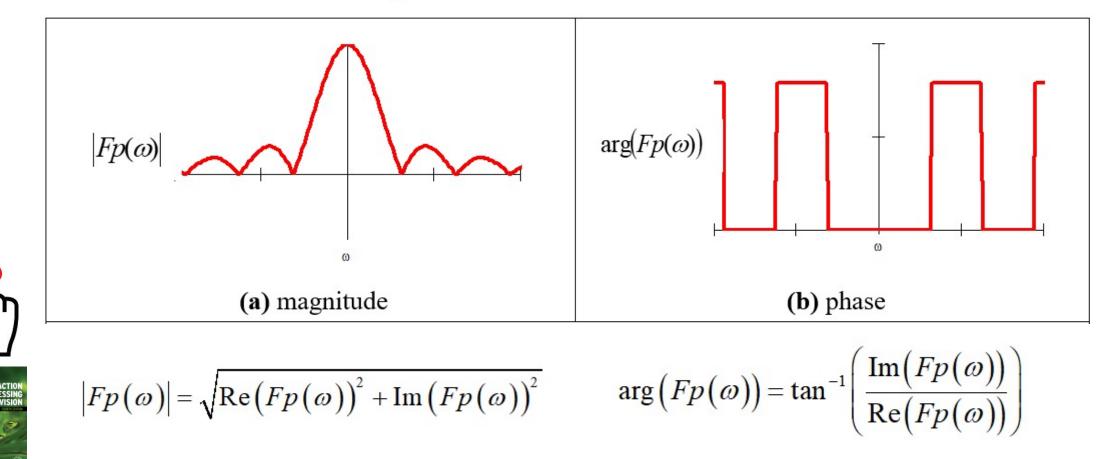
reconstructed image

error

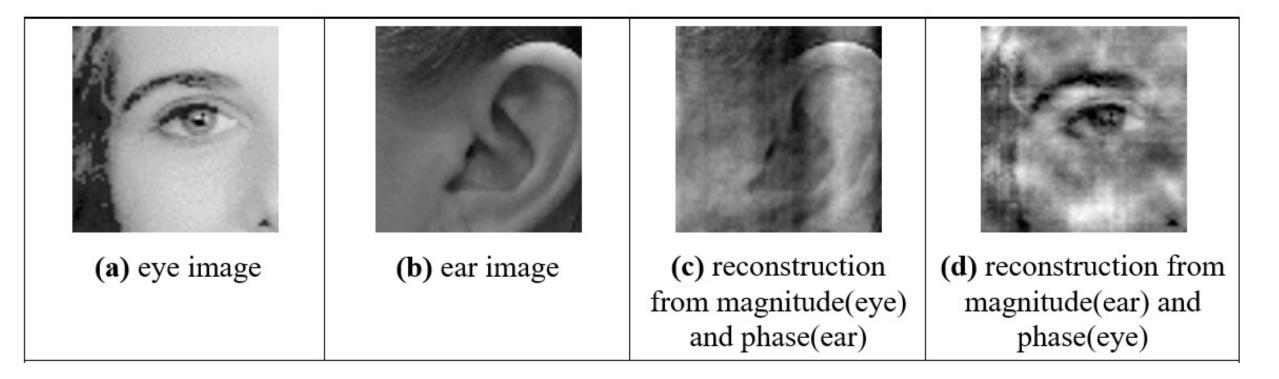
image

Magnitude and phase of Fourier transform of a pulse

$$Fp(\omega) = \int_{-\infty}^{\infty} p(t)e^{-j\omega t} dt = \operatorname{Re}(Fp(\omega)) + j\operatorname{Im}(Fp(\omega))$$



Illustrating the importance of phase



Main points so far

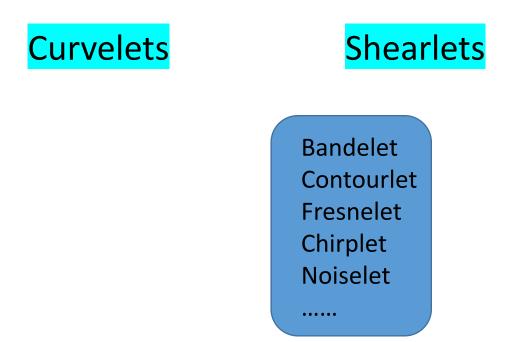
- 1 sampling data is not as simple as it appears
- 2 sampling affects space and brightness
- 3 Fourier allows us to understand frequency
- 4 Fourier allows for coding and more
- Next, Fourier will allow us to understand sampling

Other transforms

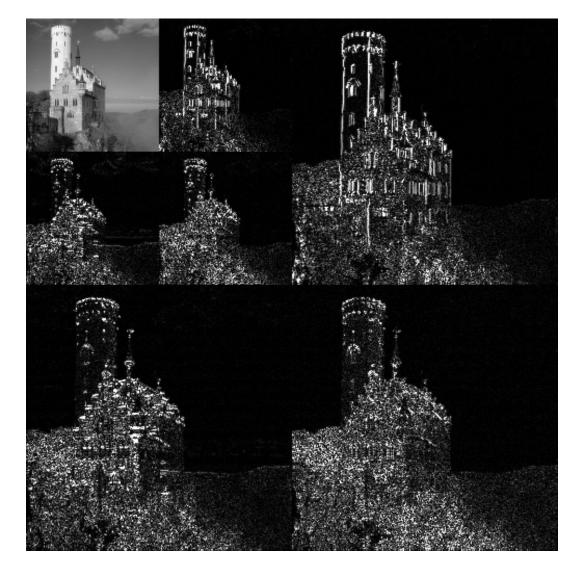
.....

- Discrete Cosine (Sine) Transform
- Discrete Hartley Transform

Continuous wavelet Discrete wavelet Complex wavelet Stationary wavelet Dual wavelet Haar wavelet Daubechies wavelet Morlet wavelet Gabor wavelet



Wavelet transform



An example of the 2D discrete wavelet transform that is used in JPEG2000 [Credit: Wikipedia]