Lecture 2 Image Formation
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What is inside an image?
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Content

1. How is an image formed?
2. What restrictions are there on image formation?
3. Go to a different space - Fourier .....



Decomposing an image into its bits

The Most Significant Bit carries the most information where as bit 0 is noise
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... and here, bit 4 is the lighting




Effects of differing image resolution

(a) 64x 64 (b) 128 x128 (¢) 256x256

Low resolution lose information but NxN points implies much storage
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—_— How do we choose an appropriate value for N?




Joseph Fourier

* Any periodic function is the result of adding
up sine and cosine waves of different
frequencies

* Sceptical? Yeah, so were Lagrange and
Laplace. Good company eh?

* “Fourier’s treatise is one of the very few
scientific books that can never be rendered
antiquated by the progress of science”
James Clerk Maxwell 1878




What are 2D waves?

2D waves are along x and y axes simultaneously
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and in terms of frequency

* N.b. colour immaterial (just for visuals)
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Step up Fourier...

Fp() = F(p®) = | p@e
Whoa! Where from.... -

First, we have that the FT is a function a( ) of a time-variant signal p(t)

The Fourier transform is then Fp = a(p(t))

The transform is a function of frequency so Fp(f) = a(p(®))

F stands for the Fourier transform so Fp(f)="F (p(t)) = a(p(t))

The function a( ) is actually an integral Fp(f)="F (p(t)) = fjooo p(t)cas(t)dt

cas(t) describes cosine and sine waves, SO Fp(f)="F (p(t)) = ffooo p(t)e /Ttdt
qﬁ%ﬁ%ﬁﬁ where cas = ‘cos and sin’ since e /¢ = cos(ft) — j sin(ft),

where j is the complex number j = v—1




What does the Fourier transform do?
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Hard day?
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Let’s see the Fourier
transform of the Hard
Day’s night chord

0

2 2 6 8§ 10 2000 2200 2400
(a) Recorded data (b) A closer look at the start of (a)
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(c) Fourier Spectrum (d) Phase of central portion
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Apparently, the piano
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A rectangular pulse and its Fourier transform
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(a) pulse of amplitude 4 =1

Fp(o)

(b) Fourier transform




A oW =Ti2=<g<T}2
* Pulse p@)= ,
0 otherwise
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Reconstructing a Signal from its Transform




Inverse Fourier transform is used for reconstruction

Inverse Fourier

Fourier transform

/-\ transform

Frequency Quantisation Information

transform coding coding
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Magnitude and phase of Fourier transform of a pulse

Fp(0)= [ ploxdi=Re(Fp()) + j1m(Fp(o))

F() arg Fp(0))
(a) magnitude (b) phase
. — — W o M (FP(@))
(o) = Re(Fp(0)) +Im(Fp(e))  are(Fp(@))=tan [Re(Fpm))]




llustrating the importance of phase

(a) eye image

(b) ear image

(¢) reconstruction
from magnitude(eye)
and phase(ear)

(d) reconstruction from
magnitude(ear) and
phase(eye)




Main points so far

1 —sampling data is not as simple as it appears
2 —sampling affects space and brightness

3 — Fourier allows us to understand frequency
4 — Fourier allows for coding and more

Next, Fourier will allow us to understand
sampling
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Other transforms

* Discrete Cosine (Sine) Transform

e Discrete Hartley Transform

Wavelets

Continuous wavelet
Discrete wavelet
Complex wavelet
Stationary wavelet
Dual wavelet

Haar wavelet
Daubechies wavelet
Morlet wavelet
Gabor wavelet

Curvelets

Shearlets




Wavelet transform

An example of the 2D discrete wavelet transform
that is used in JPEG2000 [Credit: Wikipedia]



