Lecture 5 Group Operators

COMP3204 Computer Vision

How do we combine points to make a new point in a new image?

Department of Electronics and Computer Science

School of Electronics and Computer Science

Content

- 1. How can we collect points as a group?
- 2. How can we apply processes to that group?

Template convolution

Calculate a new image from the original

Template is convolved in a raster fashion

Template is inverted for convolution

Template convolution

	100	100	200	200	200	0	0	0	0	0	
	100	100	200	200	200	0	400	400	0	0	
Image	100	100	200	200	200	0	500	500	0	0	Gy
	200	200	400	400	400	0	600	600	0	0	
	300	300	400	400	400	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
Result	0	707	400	-0	0	0	0	0	0	0	
	0	640	860	800	0	0	-500	-700	-800	0	G _x
	0	1000	1000	800	0	0	-800	-800	-800	0	
	0	0	0	0	0	0	0	0	0	0	

3×3 template and weighting coefficients

WO	<i>W</i> 1	<i>w</i> ₂
W3	W4	W5
Wó	W 7	W8

$$\mathbf{N}_{x,y} = \sum_{i \in \text{template}} \sum_{j \in \text{template}} w_{i,j} \times \mathbf{O}_{x(i),y(j)}$$

where $w_{i,j}$ are the weights and x(i), y(j) denote the position of the point that matches the weighting coefficient position

Result calculated for centre point

Border?

Three options

- 1. Set border to black
- 2. Assume wrap-around
- 3. Make template smaller near edges

Normally we assume object of interest is near centre so set border to black

3×3 averaging operator

$$\mathbf{N}_{x,y} = \frac{1}{9} \sum_{i \in 3} \sum_{j \in 3} \mathbf{O}_{x(i),y(j)}$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

5×5, w = 1/25 and 7×7, w = 1/49 etc.

Illustrating the effect of window size

Larger operators remove more noise, but lose more detail

Nasty bit

Template is actually flipped around both axes

$$\mathbf{I} * \mathbf{T} = \sum_{(x,y) \in W} \mathbf{I}_{x,y} \mathbf{T}_{i-x,j-y}$$

This does not matter for symmetric templates (i.e. the deep learning ones!)

Template convolution via the Fourier transform

Convolution theorem allows for fast computation via FFT for template size \ge 7×7

$$\mathbf{P} * \mathbf{T} = \mathfrak{I}^{-1} \left(\mathfrak{I} \left(\mathbf{P} \right) \times \mathfrak{I} \left(\mathbf{T} \right) \right)$$

Template convolution *

Fourier transform of the picture, $\Im(\mathbf{P})$ Fourier transform of the template, $\Im(\mathbf{T})$ The inversion is implicit in Fourier The theory is at end, for information only

This is fast!!

Beware of clowns ... Oxford

Point by point multiplication ($\cdot \times$) for sampled signals

Imperial

 $f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$

 $w(t) = u(t) * v(t) \iff W(f) = U(f)V(f)$

it's point by point!!

Template Convolution via the Fourier Transform

2D Gaussian function

$$g(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2 + y^2)}{2\sigma^2}}$$

Used to calculate template values Note compromise between variance σ^2 and window size Common choices 5×5, 1.0; 7×7, 1.2; 9×9, 1.4

2D Gaussian function and template

0.002	0.013	0.022	0.013	0.002
0.013	0.060	0. 098	0. 060	0.013
0.022	0. 098	0.162	0. 098	0.022
0.013	0. 060	0.098	0. 060	0.013
0.002	0.013	0.022	0.013	0.002

Template for the 5×5 Gaussian Averaging Operator (σ = 1.0).

Applying Gaussian averaging

Comparison

Finding the median from a 3×3 template

(a) 3×3 region

(b) unsorted vector

(c) sorted vector, giving median

The median is the centre element of a rank-ordered set of template points

Finding the median from a 3×3 template Preserves edges; Removes salt and pepper noise

Non-local means

Averaging which preserves regions

Applying non local means

(a) Original	(b) (a) with added Gaussian	(c) Averaged		
	noise			
(d) Gaussian smoothed	(e) Median	(f) Truncated Median		
		study study		
(g) Anisotropic diffusion	(h) Non-local-means	(i) Effect of filtering on noise		
Comparison of Filtering Operators				

Bilateral filtering

Averaging which preserves regions

Image Ray Transform

Use analogy to light to find shapes, removing remainder

Cummings, Nixon and Prugel-Bennett, *PRL* 2012

Applying Image Ray Transform

Main points so far

- 1 collection of points is called a template
- 2 application to an image is called template convolution
- 3 can use Fourier to improve speed
- 4 averaging reduces noise

How do we find features? That's edge detection, coming next

Convolution theorem, for completeness only!

1-D convolution is defined as $\mathbf{p} * \mathbf{q} = \sum_{i=0}^{N-1} p_i q_{m-i}$ by the DFT, for component u $\mathcal{F}(\mathbf{p} * \mathbf{q})_u =$

by re-ordering

by shift th^m
$$\mathcal{F}(\mathbf{q}[i - \Delta]) = \mathbf{F}\mathbf{q}[i] \times e^{-j\omega\Delta}$$

by grouping like terms

and (by serendipity?)

$$\begin{aligned} &= \frac{1}{N} \sum_{m=0}^{N-1} \left(\sum_{i=0}^{N-1} p_i \, q_{m-i} \right) e^{-j\frac{2\pi}{N}mu} \\ &= \frac{1}{N} \sum_{i=0}^{N-1} p_i \sum_{m=0}^{N-1} q_{m-i} \, e^{-j\frac{2\pi}{N}mu} \\ &= \frac{1}{N} \sum_{i=0}^{N-1} p_i \sum_{m=0}^{N-1} q_m \, e^{-j\frac{2\pi}{N}mu} e^{-j\frac{2\pi}{N}iu} \\ &= \frac{1}{N} \sum_{i=0}^{N-1} p_i e^{-j\frac{2\pi}{N}iu} \sum_{m=0}^{N-1} q_i \, e^{-j\frac{2\pi}{N}mu} \\ &= \left(\mathcal{F}(\mathbf{p}) \times \mathcal{F}(\mathbf{q}) \right)_u \end{aligned}$$

By this, the implementation of discrete convolution using the DFT is achieved by multiplication. For two sampled signals each with N points we have

$$\mathcal{F}(\mathbf{p} * \mathbf{q}) = \mathcal{F}(\mathbf{p}) \cdot \mathbf{\mathcal{F}}(\mathbf{q})$$

So convolution is the point-wise multiplication of the two transforms, and the template does not need to be inverted. The inversion is implicit in the use of the Fourier transform.

 $F_{fAg}(w) = F_f(w) \times F_g(w)$ F: Fourier tromsform $f_{fxg}(w) = \int_{-\alpha}^{+\infty} f^{x}g(f) e^{i\omega t} dt$ Proof: $= \int_{-\infty}^{\infty} \int_{-\alpha}^{\infty} \int_{-\alpha}^{\infty} f(\tau) g(\tau-\tau) d\tau e^{-i\sigma} d\tau$ $=\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \varphi(t-\tau) e^{-\int_{-\infty}^{+\infty} \varphi(t-\tau)} e^{-\int_{-\infty}^{+\infty} \varphi(t-\tau)} e^{-\int_{-\infty}^{+\infty} \varphi(t-\tau)} e^{-\int_{-\infty}^{+\infty} \varphi(\tau)} e$ = Eq (w) X Eq(w)