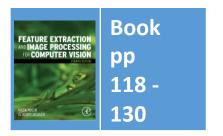
Lecture 6 Edge Detection

COMP3204 Computer Vision

What are edges and how do we find them?



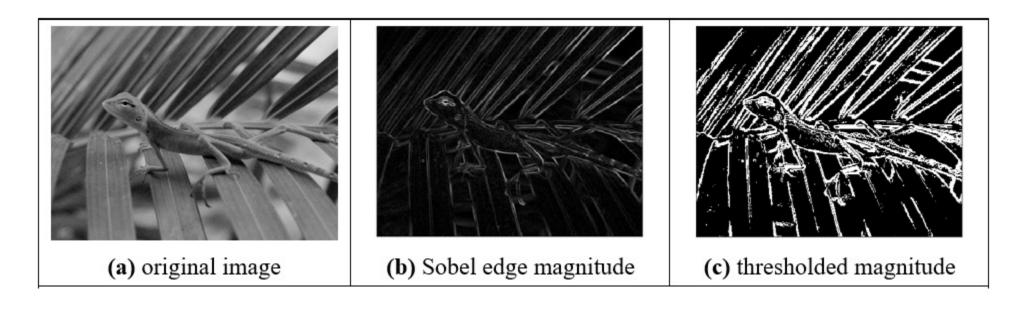
Department of Electronics and Computer Science

Content

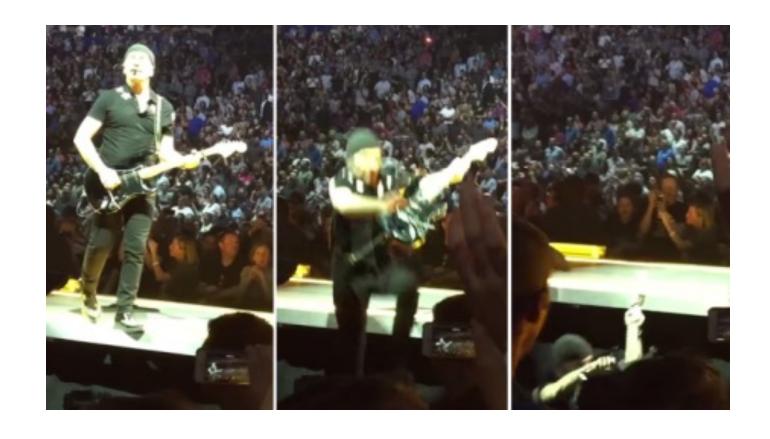
- 1. Differentiation/ differencing can be used to find edges of features
- 2. How can we improve the differencing process?

Edge detection

What is an edge? It's contrast

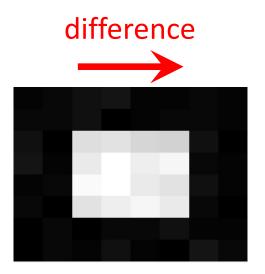


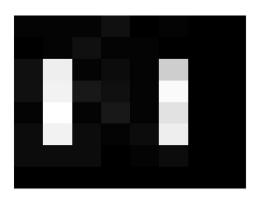
U2's Edge can't detect edges



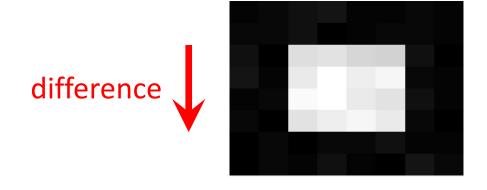
http://metro.co.uk/2015/05/15/the-edge-falls-off-the-edge-of-the-stage-in-spectacular-style-during-u2s-world-tour-5199503/

Horizontal differencing

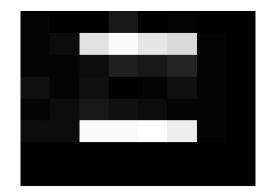




Vertical differencing

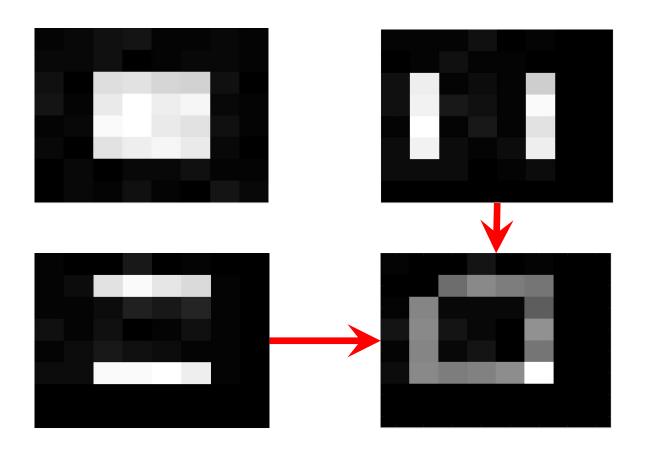


result



Vertical differencing detects horizontal edges

First order edge detection



Addition of horizontal and vertical

First order edge detection

vertical edges, Ex

$$\mathbf{E}\mathbf{x}_{x,y} = \left| \mathbf{P}_{x,y} - \mathbf{P}_{x+1,y} \right|$$

horizontal edges, Ey

$$\mathbf{E}\mathbf{y}_{x,y} = \left| \mathbf{P}_{x,y} - \mathbf{P}_{x,y+1} \right|$$

• vertical and horizontal edges
$$\mathbf{E}_{x,y} = \left| 2 \times \mathbf{P}_{x,y} - \mathbf{P}_{x+1,y} - \mathbf{P}_{x,y+1} \right|$$

First order edge detection

Template

2	-1
-1	0

Code

```
function edge = basic_difference(image)

for x = 1:cols-2 %address all columns except border
  for y = 1:rows-2 %address all rows except border
    edge(y,x)=abs(2*image(y,x)-image(y+1,x)-image(y,x+1)); % Eq. 4.4
  end
end
```


Taylor series – evaluate $f(t + \Delta t)$

First approximation, original value

$$f(t + \Delta t) = f(t)$$

Second approximation, add gradient

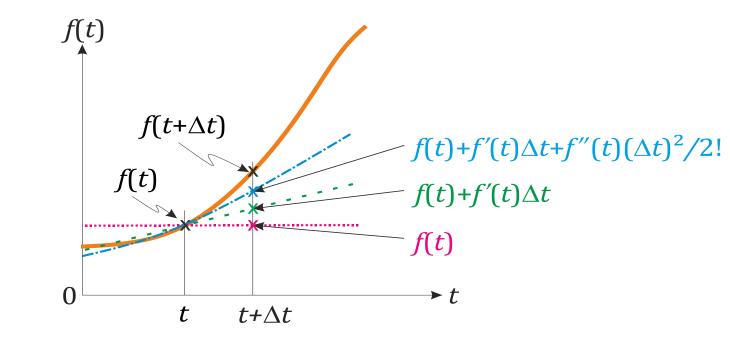
$$f(t + \Delta t) = f(t) + f'(t)\Delta t$$

Third approximation, add f'

$$f(t + \Delta t) = f(t) + f'(t)\Delta t + \frac{f''(t)}{2!}(\Delta t)^2$$

Taylor series

$$f(t + \Delta t) = f(t) + f'(t)\Delta t + \frac{f''(t)}{2!}(\Delta t)^2 + \frac{f'''(t)}{3!}(\Delta t)^3 + \dots + \frac{f^n(t)}{n!}(\Delta t)^n$$



Edge detection maths

Taylor expansion for
$$f(x + \Delta x)$$
 $f(x + \Delta x) = f(x) + \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) + O(\Delta x^3)$

By rearrangement,
$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} - O(\Delta x)$$

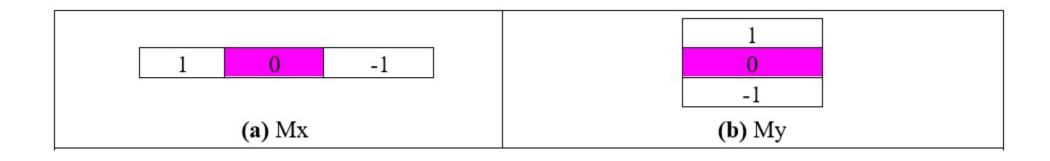
This is equivalent to
$$\mathbf{E}\mathbf{x}\mathbf{x}_{x,y} = \begin{vmatrix} \mathbf{P}_{x,y} & -\mathbf{P}_{x-1,y} \end{vmatrix}$$

Expand
$$f(x - \Delta x)$$
 $f(x - \Delta x) = f(x) - \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) - O(\Delta x^3)$ B

$$\mathbf{A} - \mathbf{B} \quad f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} - O(\Delta x^2) \qquad \mathbf{E} \mathbf{x} \mathbf{x}_{x,y} = \left| \mathbf{P}_{x+1,y} - \mathbf{P}_{x-1,y} \right|$$

If $\Delta x < 1$, this error is clearly smaller

Templates for improved first order difference

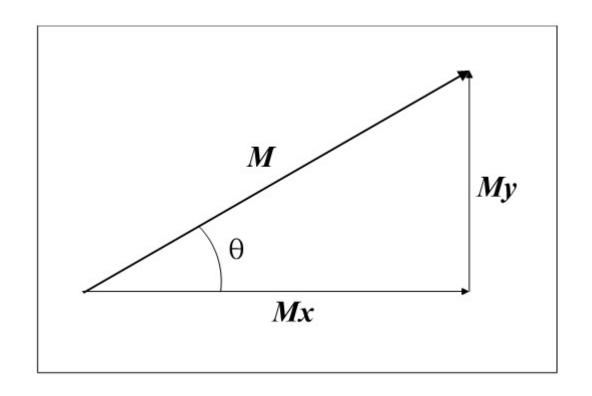


Edge Detection in Vector Format

Vectors have magnitude (strength) and direction

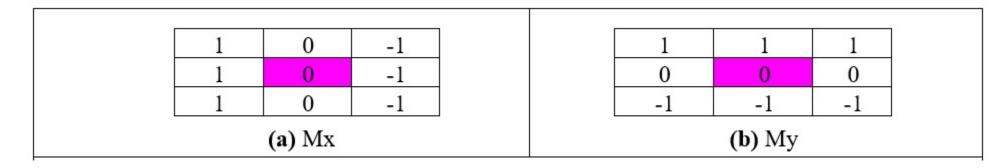
$$M = \text{magnitude} = \sqrt{M_x^2 + M_y^2}$$

$$\theta = \text{direction} = tan^{-1} \left(\frac{M_y}{M_x} \right)$$



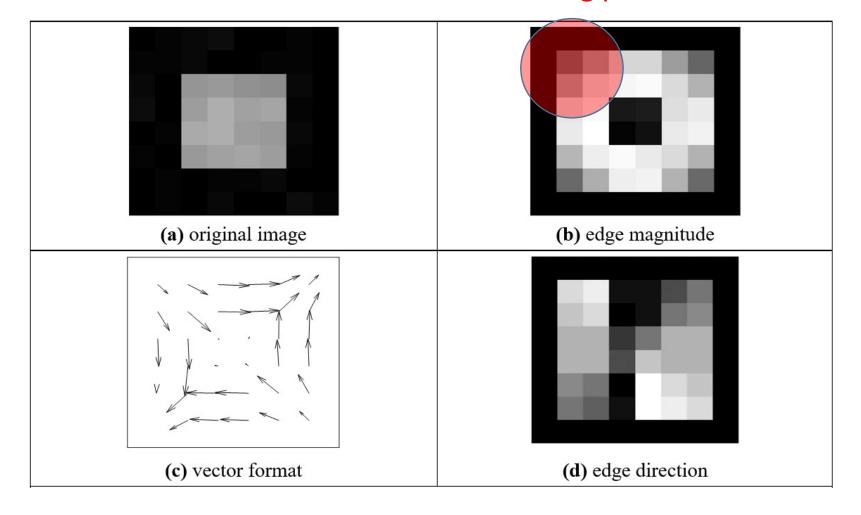
Templates for 3×3 Prewitt operator

Average improved horizontal and vertical operators over 3 rows/columns to give Prewitt templates

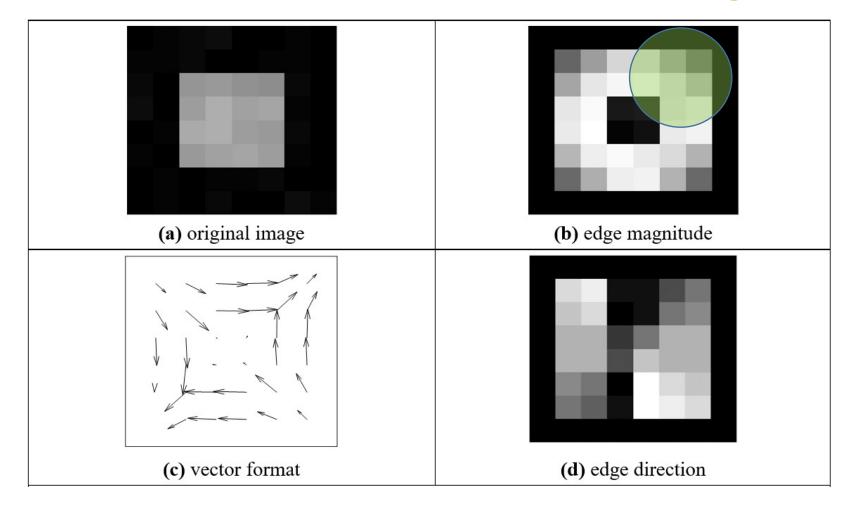


Edge magnitude and direction calculated for centre point

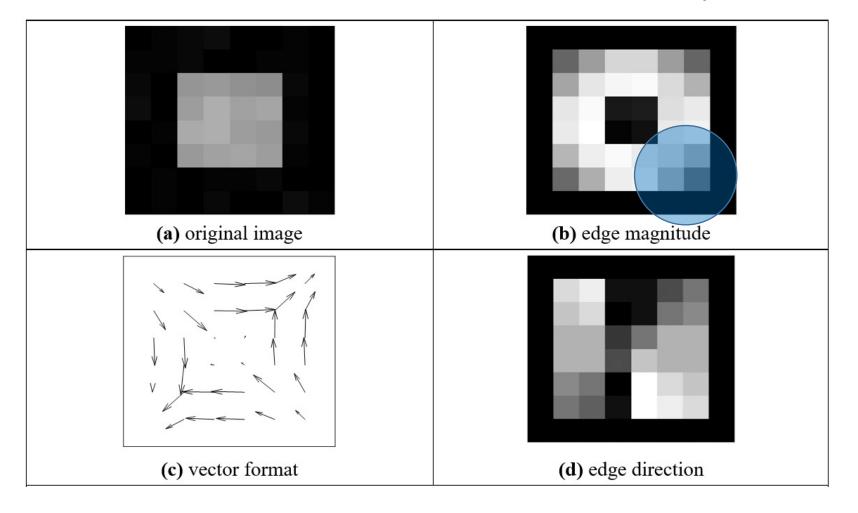
No missing points



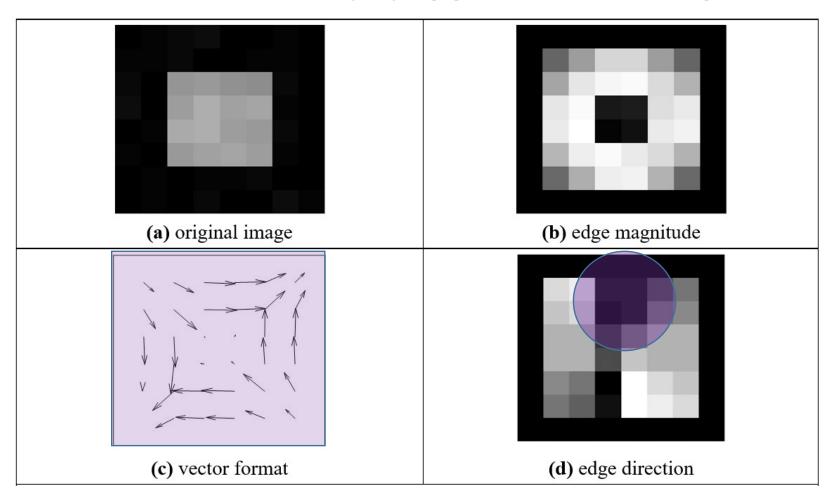
Blurred edges



No double points



Displaying gradients as an image communicates nothing



So use vectors

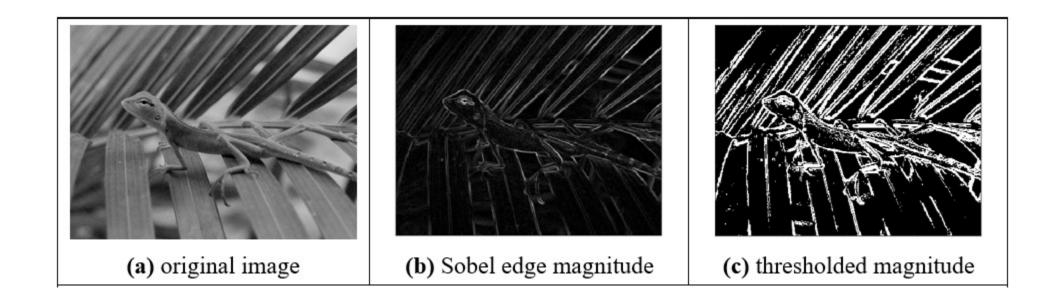
Templates for Sobel operator

Sobel is most popular basic operator Double the centre coefficients of Prewitt

<u> </u>		50	8.	<u> </u>			583	500 10	9
	1	0	-1			1	2	1	
	2	0	-2			0	0	0	
	1	0	-1			-1	-2	-1	
	(a) Mx				(b) My				

WHY?

Applying Sobel operator

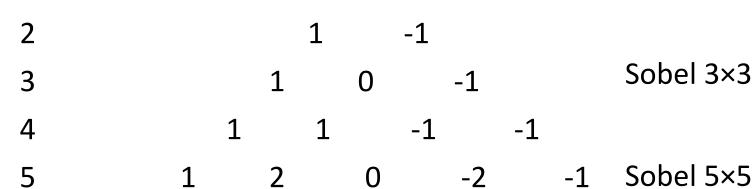


Generalising Sobel - use Pascal's triangle

1. Averaging Window size 2 Sobel 3×3 3 3 4 Sobel 5×5 5 6

Differencing

Window size



Generalised Sobel

```
Generated by: averaging *(differencing)
>> s=Sobel templates(5)
s(:,:,1) =
       8 0 -8 -4
     12 0 -12 -6
             0 -8 -4
     8
             0 -2 -1
```

Main points so far

- 1 differencing detects contrast and thus edges
- 2 can improve the differencing process (by maths!!)
- 3 Sobel is a good general purpose operator
- We shall go to more sophisticated methods, coming up next.

Filters for edge detection