Lecture 7 Further Edge Detection

COMP3204 Computer Vision

What better ways are there to detect edges?

Department of Electronics and Computer Science

School of Electronics and Computer Science

- 1. How can we improve first-order edge detection?
- 2. How can we detect edges using second order differentiation/ differencing

Applying Sobel operator

Sobel is a good basic operator

Blurred edges

Noisy edges

Stages in Canny edge detection operator

Canny gives thin edges in the right place, but is more complex

Canny edge detection operator

Formulated with three main objectives:

- optimal detection with no spurious responses;
- good localisation with minimal distance between detected and true edge position; and
- single response to eliminate multiple responses to a single edge.

Approximation

- 1. use Gaussian smoothing;
- 2. use the Sobel operator; / combine?
- 3. use non-maximal suppression; and
- 4. threshold with hysteresis to connect edge points.

Interpolation in non-maximum suppression

Need to use points which are not on the image grid

Uses linear interpolation

Hysteresis thresholding transfer function

Lower threshold = average noise

Upper threshold = average feature boundary

Action of non-maximum suppression and hysteresis thresholding

Walk along top of ridge

Gives thin edges in the right place

Comparing hysteresis thresholding with uniform thresholding

Hysteresis thresholding gives all points > upper threshold plus any connected points > lower threshold

Comparing Canny with Sobel

FEATURE EXTRACTIO

The lines are thinner here, making Sobel look better!

Comparing Canny with Sobel The lines are indeed thinner

FEATURE EXTRACTION AND IMAGE PROCESSING FOR COMPUTER VISION

Comparing Canny with Sobel

FEATURE EXTRACTION AND IMAGE PROCESSING FOR COMPUTER VISION

The noise is less

First and second order edge detection

First order = single differentiation with thresholding

Second order = twice differentiation with zero-crossing detection

Edge detection via the Laplacian operator

1	2	3	4	1	1	2	1	0	0	0	0	0	0	0	0	
2	2	3	0	1	2	2	1	0	1	-31	-47	-36	-32	0	0	
3	0	38	39	37	36	3	0	0	-44	70	37	31	60	-28	0	
4	1	40	44	41	42	2	1	0	-42	34	12	1	50	-41	0	
1	2	43	44	40	39	3	1	0	-37	47	8	-6	31	-32	0	
2	0	39	41	42	40	2	0	0	-45	72	37	45	74	-36	0	
0	2	0	2	2	3	1	1	0	6	-44	-38	-40	-31	-6	0	
0	2	1	3	1	0	4	2	0	0	0	0	0	0	0	0	
(a) image data									(b) result of the Laplacian operator							

Simple, but unused!

Edge detection is about differentiation

Take a Gaussian function

$$g(x, y, \sigma) = e^{\frac{-(x^2 + y^2)}{2\sigma^2}}$$

Differentiate once

And again

$$\frac{\partial g(x,y,\sigma)}{\partial x} = -\frac{x}{\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$
$$\frac{\partial^2 g(x,y,\sigma)}{\partial x^2} = \left(\frac{x^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2+y^2)}{2\sigma^2}}}{\sigma^2}$$

Mathbelts on...

Second order in x and y is $\nabla^2 g(x, y, \sigma) = \frac{\partial^2 g(x, y, \sigma)}{\partial x^2} U_x + \frac{\partial^2 g(x, y, \sigma)}{\partial y^2} U_y$ By substitution $= \left(\frac{x^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2} + \left(\frac{y^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2}$ So we get $= \frac{1}{\sigma^2} \left(\frac{x^2 + y^2}{\sigma^2} - 2\right) e^{\frac{-(x^2 + y^2)}{\sigma^2}}$

Second order = Laplacian of Gaussian = Marr Hildreth

Google: "Laplacian of Gaussian"

$$LoG \stackrel{\triangle}{=} \triangle G_{\sigma}(x,y) = \frac{\partial^2}{\partial x^2} G_{\sigma}(x,y) + \frac{\partial^2}{\partial y^2} G_{\sigma}(x,y) = \frac{x^2 + y^2}{\sigma^4} \underbrace{2\sigma^2}_{\sigma^4} e^{-(x^2 + y^2)/2\sigma^2} e^{-(x^2 + y^2)/2$$

LoG(x,y) =
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm; http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html; http://academic.mu.edu/phys/matthysd/web226/Lab02.htm

Shape of Laplacian of Gaussian operator

It's called the 'Mexican hat operator'

Marr-Hildreth edge detection

Small template, small σ for local features Large template, large σ for global features

Comparison of edge detection operators

FEATURE EXTRACTIO

Main points so far

- 1 Canny provides thin edges in the right place
- 2 second order (Marr-Hildreth) requires zerocrossing detection
- 3 the results by Marr-Hildreth and Canny are well worth the extra computation

Now we need to collect the edges to find shape. Coming next...

Advanced: Phase Congruency

Advanced: localised feature extraction

Advanced: localised feature extraction

feature points

SIFT (mega famous)

Others: SURF, FAST, ORB, FREAK, LOCKY, etc.

regions

brightness clustering

Lomeli-R. and Nixon and Carter, Mach Vis Apps 2016

Advanced – saliency

