
Lecture 8 Finding Shapes

COMP3204 Computer Vision

How can we group points to find shapes?

Book
pp
187-201;
208-215

Content

1. How do we define and detect shapes in images?
2. How can we improve the detection process?

Feature extraction by thresholding

Conclusion: we need shape!

Template Matching -basis

image template accumulator space

count of
matching

points

Suggestions for improving the process? Use edges!

Process of template matching

Template Matching
Intuitively simple
Correlation and convolution
Implementation via Fourier

accumulator spaceimage template

Template matching in occluded images

Template matching is optimal in occlusion

Template matching in noisy images

Template matching is optimal in noise
…but….

Convolution and correlation

Convolution is about application of a template
and involves flipping the template 𝐈 ∗ 𝐓 = ∑ !,# ∈% 𝐈!,#𝐓&'!,('#

or by multiplying the transforms 𝐈 ∗ 𝐓 = 𝐹') 𝐹 𝐈 .×𝐹(𝐓)

Beware centring with transforms

Convolution and correlation

Convolution is about application of a template
and involves flipping the template 𝐈 ∗ 𝐓 = ∑ !,# ∈% 𝐈!,#𝐓&'!,('#

or by multiplying the transforms 𝐈 ∗ 𝐓 = 𝐹') 𝐹 𝐈 .×𝐹(𝐓)

Correlation is about matching of a template 𝐈 ⊗ 𝐓 = ∑ *,+ ∈, 𝐈!,#𝐓!-&,#-(

Beware centring with transforms

Convolution and correlation

Convolution is about application of a template
and involves flipping the template 𝐈 ∗ 𝐓 = ∑ !,# ∈% 𝐈!,#𝐓&'!,('#

or by multiplying the transforms 𝐈 ∗ 𝐓 = 𝐹') 𝐹 𝐈 .×𝐹(𝐓)

Correlation is about matching of a template 𝐈 ⊗ 𝐓 = ∑ *,+ ∈, 𝐈!,#𝐓!-&,#-(

so we need to flip the Fourier template 𝐈 ⊗ 𝐓 = 𝐹') 𝐹 𝐈 .×𝐹(−𝐓)

Beware centring with transforms

Encore, Baron Fourier!

No sliding of
templates here;
Cost is 2×FFT plus
multiplication

Template matching is slow, so use FFT

𝐈 ⊗ 𝐓 = -
*,+ ∈,

𝐈!,#𝐓!-&,#-(

= 𝐹') 𝐹 𝐈 .×𝐹(−𝐓)

Applying template matching

Hough Transform

y m x c= ´ +
c x m y= - ´ +

• Performance same as template matching, but faster
• A line is points x, y gradient m intercept c
• and is points m, c gradient -x intercept y

Hough Transform

y m x c= ´ +
c x m y= - ´ +

image

x
y

accumulator space

m
c

• Performance same as template matching, but faster
• A line is points x, y gradient m intercept c
• and is points m, c gradient -x intercept y

Hough Transform

y m x c= ´ +
c x m y= - ´ +

image

x
y

accumulator space

m
c

The coordinates of the peak
are the parameters of the

line

• Performance same as template matching, but faster
• A line is points x, y gradient m intercept c
• and is points m, c gradient -x intercept y

In maths it’s the principle of duality

Pseudocode for HT

accum=0
for all x,y !look at all points

if edge(y,x)>threshold !check significance

for m=-10 to +10 !if so, go thru m
c=-x*m+y !calculate c

accum(m,c) PLUS 1 !vote in accumulator

m,c = argmax(accum) !peak gives parameters

Applying the Hough transform for lines

accumulator spacedetected linesimage

OK, it works. Can anyone see a problem?

Hough Transform for Lines … problems

• m, c tend to infinity
• Change the parameterisation
• Use foot of normal
• Gives polar HT for lines

cos sinx yr q q= +

r

q

Image containing line

Polar Hough transform for lines

[Credit Wikipedia]

Images and the accumulator space of the
polar Hough transform

Applying the Hough transform

Main points so far

1 – target shape defined by template
2 – and detected by template convolution
3 – optimal in occlusion and noise
4 – Hough transform gives same result, but faster

But shapes can be more complex than lines and
not defined by an equation. That’s next…

