Lecture 9 Finding More Shapes

COMP3204 Computer Vision

How can we go from conic sections to general shapes?

Southampton
School of Electronics and Computer Scienc

Content

1. What more versions of the Hough transform are possible?
2. What are its limits?
3. Can it be used to detect shapes that are not given by an equation?

Hough Transform for Circles

Again, it's duality: $\quad\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$

$$
\begin{array}{cccccc}
\text { Points: } & x, y & \text { centre: } & x_{0}, y_{0} & \text { radius: } & r \\
\text { " } \quad x_{0}, y_{0} & \text { " } & x, y & \text { " } & r
\end{array}
$$

Circle Voting and Accumulator Space

Pseudocode

```
accum=0
for all x,y
    if edge(y,x)>threshold
        for r=min_r, max_r
        for theta = 0,2*pi
            x0=x+r*}\operatorname{cos(theta)
            y0=y+r*sin(theta)
            accum(y0, x0, r ) PLUS 1
y0, x0, r= argmax(accum)
```

!look at all points
!check significance
!do values of radius
!go around a circle
! generate x
!generate y
!peak gives parameters

Applying the HT for circles

image

(Sobel) edges

accumulator

small and large circles

Integrodifferential operator?

https://stackoverflow.com/questions/2705805 7/comparing-irises-images-with-opencv

Contact lenses

Extensions to conic sections

Ellipse

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1
$$

Described by 4 parameters. If each has 100 values,

$$
\text { accumulator size }=10^{2} \times 10^{2} \times 10^{2} \times 10^{2}=10^{8}=0.1 \mathrm{~GB}
$$

Add rotation, that's 10GB Ouch!
Motivates approaches to save memory and improve speed (since result is optimal)

Speeding it up.....

Now it's a 3D accumulator, fast algorithms are available E.g. by differentiation

Differentiating $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ gives $\frac{d y}{d x}=-\frac{\left(x-x_{0}\right)}{\left(y-y_{0}\right)}$
Substitute back into Eqn. for circle

$$
\begin{gathered}
\left(\frac{d y}{d x}\right)^{2}\left(y-y_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \quad \text { 2D accumulator } \\
y-y_{0}=\frac{r}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}} \text { This is the edge direction }
\end{gathered}
$$

Fireside

$$
\rho=x \cos \theta+y \sin \theta
$$

Line

Arbitrary Shapes

- Use Generalised HT
- Form (discrete) look-up-table (R-table)
- Vote via look-up-table

R-table Construction

R-table Construction

$$
\begin{aligned}
x_{c} & =x_{i}-r \cos (\alpha) \\
y_{c} & =y_{i}-r \sin (\alpha)
\end{aligned}
$$

Edge direction is not a unique description
Gives noise in accumulator

Procedure for GHT

Preparation

1. Determine centre of template shape
2. Form R-table from template shape

Application

1. Use R-table to vote for points in the real image
```
    For edge points > threshold
```

 Get edge direction \((x, y)\)
 For all R-table entries with direction \((x, y)\)
 Vote in accumulator (@distance, @direction)
 2. Argmax (accumulator) gives centre co-ordinates of shape

Arbitrary Shapes

- Use Generalised HT
- Form (discrete) look-up-table (R-table)
- Vote via look-up-table
- Scale? scale R-table voting
- Orientation? Rotate R-table voting
- Inherent problems with discretisation

R-table Construction

$$
\begin{gathered}
x_{c}=x_{i}-r S \cos (\alpha+\theta) \\
y_{c}=y_{i}-r S \sin (\alpha+\theta) \\
\text { Scale Orientation }
\end{gathered}
$$

Fireside

Template

Active Contours

- For unknown arbitrary shapes: extract by evolution
- Elastic band analogy
- Balloon analogy
- Discrete vs. continuous
- Volcanoes?

Geometric active contours

Main points so far

1 - conic sections become more complex and take more time
2 - can use Generalised Hough Transform for complex shapes
3 - shape detection IS computer vision. Many more approaches

Let's see how computer vision can work

