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1 Introduction  

1.1  Overview 

his is where we start, by looking at the human visual system to investigate what is meant by 

vision, how a computer can be made to sense pictorial data and how we can process an 

image. The overview of this Chapter is shown in Table 1.1; you will find a similar overview 

at the start of each chapter. References/citations are collected at the end of each Chapter. 

Main topic Sub topics Main points 

Human 

vision 

system 

How the eye works, how visual 

information is processed and how it can 

fail. 

Sight, vision, lens, retina, image, colour, 

monochrome, processing, brain, visual 

illusions.  

Computer 

vision 

systems 

How electronic images are formed, how 

video is fed into a computer and how we 

can process the information using a 

computer. 

Picture elements, pixels, video standard, 

camera technologies, pixel technology, 

performance effects, specialist cameras, 

video conversion. 

Processing 

Images 

How we can process images using the 

Python computer language and 

mathematical packages; introduction to 

Python and to Matlab. 

Programming and processing images, 

visualisation of results, availability, use. 

Literature Other textbooks and other places to find 

information on image processing, 

computer vision and feature extraction. 

Journals, textbooks, websites and this 

book’s website.  

Table 1.1 Overview of Chapter 1 

 

1.2  Human and Computer Vision 

A computer vision system processes images acquired from an electronic camera, which is like the 

human vision system where the brain processes images derived from the eyes. Computer vision is 

a rich and rewarding topic for study and research for electronic engineers, computer scientists and 

many others. Now that cameras are cheap and widely available and computer power and memory 

are vast, computer vision is found in many places. There are now many vision systems in routine 

industrial use: cameras inspect mechanical parts to check size, food is inspected for quality, and 

images used in astronomy benefit from computer vision techniques. Forensic studies and biometrics 

(ways to recognise people) using computer vision include automatic face recognition and 

recognising people by the ‘texture’ of their irises. These studies are paralleled by biologists and 

psychologists who continue to study how our human vision system works, and how we see and 

recognise objects (and people). 

A selection of (computer) images is given in Figure 1.1, these images comprise a set of points 

or picture elements (usually concatenated to pixels) stored as an array of numbers in a computer. 

To recognise faces, based on an image such as Figure 1.1(a), we need to be able to analyse 

constituent shapes, such as the shape of the nose, the eyes, and the eyebrows, to make some 

measurements to describe and then recognise a face. Figure 1.1(b) is an ultrasound image of the 

T 
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carotid artery (which is near the side of the neck and supplies blood to the brain and the face), taken 

as a cross section through it. The top region of the image is near the skin; the bottom is inside the 

neck. The image arises from combinations of the reflections of the ultrasound radiation by tissue. 

This image comes from a study aimed to produce three-dimensional models of arteries, to aid 

vascular surgery. Note that the image is very noisy, and this obscures the shape of the (elliptical) 

artery. Remotely sensed images are often analysed by their texture content. The perceived texture 

is different between the road junction and the different types of foliage seen in Figure 1.1(c). 

Finally, Figure 1.1(d) is a Magnetic Resonance Image (MRI) of a cross-section near the middle of 

a human body. The chest is at the top of the image, and the lungs and blood vessels are the dark 

areas, the internal organs and the fat appears grey. MRI images are in routine medical use nowadays, 

owing to their ability to provide high quality images. 

    

(a) face from a 

camera 

(b) artery from 

ultrasound 

(c) ground by remote-

sensing 

(d) body by magnetic 

resonance 

Figure 1.1 Real images from different sources 

There are many different image sources. In medical studies, MRI is good for imaging soft tissue, 

but does not reveal the bone structure (the spine cannot be seen in Figure 1.1(d)); this can be 

achieved by using Computerised Tomography (CT) which is better at imaging bone, as opposed to 

soft tissue. Remotely sensed images can be derived from infrared (thermal) sensors or Synthetic-

Aperture Radar, rather than by cameras, as in Figure 1.1(c). Spatial information can be provided by 

two-dimensional arrays of sensors, including sonar arrays. There are perhaps more varieties of 

sources of spatial data in medical studies than in any other area. But computer vision techniques 

are used to analyse any form of data, not just the images from cameras. 

  

(a) circles (b) textures 

Figure 1.2 Examples of synthesised images 

Synthesised images are good for evaluating techniques and finding out how they work, and some 

of the bounds on performance. Two synthetic images are shown in Figure 1.2. Figure 1.2(a) is an 

image of circles that were specified mathematically. The image is an ideal case: the circles are 

perfectly defined and the brightness levels have been specified to be constant. This type of synthetic 

image is good for evaluating techniques which find the borders of the shape (its edges), the shape 

itself and even for making a description of the shape. Figure 1.2(b) is a synthetic image made up of 
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sections of real image data. The borders between the regions of image data are exact, again specified 

by a program. The image data comes from a well-known texture database, the Brodatz album of 

textures. This was scanned and stored as a computer image. This image can be used to analyse how 

well computer vision algorithms can identify regions of differing texture.  

This Chapter will show you how basic computer vision systems work, in the context of the 

human vision system. It covers the main elements of human vision showing you how your eyes 

work (and how they can be deceived!). For computer vision, this Chapter covers the hardware and 

the software used for image analysis, giving an introduction to Python and Matlab, the software 

and mathematical packages, respectively, used throughout this text to implement computer vision 

algorithms. Finally, a selection of pointers to other material is provided, especially those for more 

detail on the topics covered in this Chapter. 

1.3  The Human Vision System 

Human vision is a sophisticated system that senses and acts on visual stimuli. It has evolved for 

millions of years, primarily for defence or survival. Intuitively, computer and human vision appear 

to have the same function. The purpose of both systems is to interpret spatial data, data that is 

indexed by more than one dimension. Even though computer and human vision are functionally 

similar, you cannot expect a computer vision system to exactly replicate the function of the human 

eye. This is partly because we do not understand fully how the vision system of the eye and brain 

works, as we shall see in this section. Accordingly, we cannot design a system to exactly replicate 

its function. In fact, some of the properties of the human eye are useful when developing computer 

vision techniques, whereas others are actually undesirable in a computer vision system. But we 

shall see computer vision techniques which can to some extent replicate - and in some cases even 

improve upon - the human vision system.  

You might ponder this, so put one of the fingers from each of your hands in front of your face 

and try to estimate the distance between them. This is difficult, and we are sure you would agree 

that your measurement would not be very accurate. Now put your fingers very close together. You 

can still tell that they are apart even when the distance between them is tiny. So human vision can 

distinguish relative distance well, but is poor for absolute distance. Computer vision is the other 

way around: it is good for estimating absolute difference, but with relatively poor resolution for 

relative difference. The number of pixels in the image imposes the accuracy of the computer vision 

system, but that does not come until the next Chapter. Let us start at the beginning, by seeing how 

the human vision system works. 

In human vision, the sensing element is the eye from which images are transmitted via the optic 

nerve to the brain, for further processing. The optic nerve has insufficient bandwidth to carry all 

the information sensed by the eye. Accordingly, there must be some pre-processing before the 

image is transmitted down the optic nerve. The human vision system can be modelled in three parts: 

1) the eye − this is a physical model since much of its function can be determined by 

pathology; 

2) a processing system − this is an experimental model since the function can be modelled, 

but not determined precisely; and  

3) analysis by the brain − this is a psychological model since we cannot access or model 

such processing directly, but only determine behaviour by experiment and inference. 
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Figure 1.3  Human eye 

1.3.1  The Eye 

The function of the eye is to form an image; a cross-section of the eye is illustrated in Figure 1.3. 

Vision requires an ability to selectively focus on objects of interest. This is achieved by the ciliary 

muscles that hold the lens. In old age, it is these muscles which become slack and the eye loses its 

ability to focus at short distance. The iris, or pupil, is like an aperture on a camera and controls the 

amount of light entering the eye. It is a delicate system and needs protection, this is provided by the 

cornea (sclera). This is outside the choroid which has blood vessels that supply nutrition and is 

opaque to cut down the amount of light. The retina is on the inside of the eye, which is where light 

falls to form an image. By this system, muscles rotate the eye, and shape the lens, to form an image 

on the fovea (focal point) where the majority of sensors are situated. The blind spot is where the 

optic nerve starts, there are no sensors there. 

Focusing involves shaping the lens, rather than positioning it as in a camera. The lens is shaped 

to refract close images greatly, and distant objects little, essentially by ‘stretching’ it. The distance 

of the focal centre of the lens varies from approximately 14 mm to around 17 mm depending on the 

lens shape. This implies that a world scene is translated into an area of about 2 mm2. Good vision 

has high acuity (sharpness), which implies that there must be very many sensors in the area where 

the image is formed. 

There are actually nearly 100 million sensors dispersed around the retina. Light falls on these 

sensors to stimulate photochemical transmissions, which results in nerve impulses that are collected 

to form the signal transmitted by the eye. There are two types of sensor: firstly the rods − these are 

used for black and white (scotopic) vision; and secondly the cones- these are used for colour 

(photopic) vision. There are approximately 10 million cones and nearly all are found within 5o of 

the fovea. The remaining 100 million rods are distributed around the retina, with the majority 
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between 20o and 5o of the fovea. Acuity is actually expressed in terms of spatial resolution 

(sharpness) and brightness/ colour resolution and is greatest within 1o of the fovea.  

There is only one type of rod, but there are three types of cones. These types are: 

1. S – short wavelength: these sense light towards the blue end of the visual spectrum; 

2. M – medium wavelength these sense light around green; and 

3. L – long wavelength: these sense light towards the red region of the spectrum. 

 

(a) image showing the Mach band effect 
  

(b) cross-section through (a) (c) perceived cross-section through (a) 

Figure 1.4 Illustrating Mach bands 

The total response of the cones arises from summing the response of these three types of cone, 

this gives a response covering the whole of the visual spectrum. The rods are sensitive to light 

within the entire visual spectrum, giving the monochrome capability of scotopic vision. When the 

light level is low, images are formed away from the fovea to use the superior sensitivity of the rods, 

but without the colour vision of the cones. Note that there are actually very few of the blueish cones, 

and there are many more of the others. But we can still see a lot of blue (especially given ubiquitous 

denim!). So, somehow, the human vision system compensates for the lack of blue sensors, to enable 

us to perceive it. The world would be a funny place with red water! The vision response is actually 

logarithmic and depends on brightness adaption from dark conditions where the image is formed 

on the rods, to brighter conditions where images are formed on the cones. More on colour sensing 

is to be found in Chapter 11. 

One inherent property of the eye, known as Mach bands, affects the way we perceive images. 

These are illustrated in Figure 1.4 and are the bands that appear to be where two stripes of constant 

shade join. By assigning values to the image brightness levels, the cross-section of plotted 

brightness is shown in Figure 1.4(a). This shows that the picture is formed from stripes of constant 

brightness. Human vision perceives an image for which the cross-section is as plotted in Figure 

1.4(c). These Mach bands do not really exist, but are introduced by your eye. The bands arise from 
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overshoot in the eyes’ response at boundaries of regions of different intensity (this aids us to 

differentiate between objects in our field of view). The real cross-section is illustrated in Figure 

1.4(b). Note also that a human eye can distinguish only relatively few grey levels. It actually has a 

capability to discriminate between 32 levels (equivalent to five bits) whereas the image of Figure 

1.4(a) could have many more brightness levels. This is why your perception finds it more difficult 

to discriminate between the low intensity bands on the left of Figure 1.4(a). (Note that Mach bands 

cannot be seen in the earlier image of circles, Figure 1.2(a), due to the arrangement of grey levels.) 

This is the limit of our studies of the first level of human vision; for those who are interested; 

[Cornsweet70] provides many more details concerning visual perception. 

So we have already identified two properties associated with the eye that it would be difficult to 

include, and would often be unwanted, in a computer vision system: Mach bands and sensitivity to 

unsensed phenomena. These properties are integral to human vision. At present, human vision is 

far more sophisticated than we can hope to achieve with a computer vision system. Infrared guided-

missile vision systems can actually have difficulty in distinguishing between a bird at 100 m and a 

plane at 10 km. Poor birds! (Lucky plane?) Human vision can handle this with ease. 

 

Figure 1.5 Neural processing 

1.3.2  The Neural System 

Neural signals provided by the eye are essentially the transformed response of the wavelength 

dependent receptors, the cones and the rods. One model is to combine these transformed signals by 

addition, as illustrated in Figure 1.5. The response is transformed by a logarithmic function, 

mirroring the known response of the eye. This is then multiplied by a weighting factor that controls 

the contribution of a particular sensor. This can be arranged to allow combination of responses from 

a particular region. The weighting factors can be chosen to afford particular filtering properties. For 

example, in lateral inhibition, the weights for the centre sensors are much greater than the weights 

for those at the extreme. This allows the response of the centre sensors to dominate the combined 

response given by addition. If the weights in one half are chosen to be negative, whilst those in the 

other half are positive, then the output will show detection of contrast (change in brightness), given 

by the differencing action of the weighting functions. 

The signals from the cones can be combined in a manner that reflects chrominance (colour) and 

luminance (brightness). This can be achieved by subtraction of logarithmic functions, which is then 

equivalent to taking the logarithm of their ratio. This allows measures of chrominance to be 

obtained. In this manner, the signals derived from the sensors are combined prior to transmission 

through the optic nerve. This is an experimental model, since there are many ways possible to 

combine the different signals together.  
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Visual information is then sent back to arrive at the Lateral Geniculate Nucleus (LGN) which is 

in the thalamus and is the primary processor of visual information. This is a layered structure 

containing different types of cells, with differing functions. The axons from the LGN pass 

information on to the visual cortex. The function of the LGN is largely unknown, though it has been 

shown to play a part in coding the signals that are transmitted. It is also considered to help the visual 

system focus its attention, such as on sources of sound. For further information on retinal neural 

networks, see [Ratliff65]; an alternative study of neural processing can be found in [Overington92]. 

1.3.3  Processing 

The neural signals are then transmitted to two areas of the brain for further processing. These areas 

are the associative cortex, where links between objects are made, and the occipital cortex, where 

patterns are processed. It is naturally difficult to determine precisely what happens in this region of 

the brain. To date, there have been no volunteers for detailed study of their brain’s function (though 

progress with new imaging modalities such as Positive Emission Tomography or Electrical 

Impedance Tomography will doubtless help). For this reason, there are only psychological models 

to suggest how this region of the brain operates. 

 

  

(a) word? (b) Pacmen? 

Figure 1.6 How human vision uses edges 

It is well known that one function of the human vision system is to use edges, or boundaries, of 

objects. We can easily read the word in Figure 1.6(a), this is achieved by filling in the missing 

boundaries in the knowledge that the pattern most likely represents a printed word. But we can infer 

more about this image; there is a suggestion of illumination, causing shadows to appear in unlit 

areas. If the light source is bright, then the image will be washed out, causing the disappearance of 

the boundaries which are interpolated by our eyes. So there is more than just physical response, 

there is also knowledge, including prior knowledge of solid geometry. This situation is illustrated 

in Figure 1.6(b) that could represent three ‘pacmen’ about to collide, or a white triangle placed on 

top of three black circles. Either situation is possible. 
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(a) Zollner (b) Ebbinghaus 

Figure 1.7 Static illusions 

It is also possible to deceive human vision, primarily by imposing a scene that it has not been 

trained to handle. In the famous Zollner illusion, Figure 1.7(a), the bars appear to be slanted, 

whereas in reality they are vertical (check this by placing a pen between the lines): the small 

crossbars mislead your eye into perceiving the vertical bars as slanting. In the Ebbinghaus illusion, 

Figure 1.7(b), the inner circle appears to be larger when surrounded by small circles, than it is when 

surrounded by larger circles. 

 

Figure 1.8 Benham’s disk 

There are dynamic illusions too: you can always impress children with the “see my wobbly 

pencil” trick. Just hold the pencil loosely between your fingers then, to whoops of childish glee, 

when the pencil is shaken up and down, the solid pencil will appear to bend. Benham’s disk, Figure 

1.8, shows how hard it is to model vision accurately. If you make up a version of this disk into a 

spinner (push a matchstick through the centre) and spin it anti-clockwise, you do not see three dark 

rings, you will see three coloured ones. The outside one will appear to be red, the middle one a sort 

of green, and the inner one will appear deep blue. (This can depend greatly on lighting - and contrast 

between the black and white on the disk. If the colours are not clear, try it in a different place, with 

different lighting.) You can appear to explain this when you notice that the red colours are 

associated with the long lines, and the blue with short lines. But that is from physics, not 

psychology. Now spin the disk clockwise. The order of the colours reverses: red is associated with 

the short lines (inside), and blue with the long lines (outside). So the argument from physics is 

clearly incorrect, since red is now associated with short lines not long ones, revealing the need for 

psychological explanation of the eyes’ function. This is not colour perception, see [Armstrong91] 

for an interesting (and interactive!) study of colour theory and perception.  



Introduction 

 9 

Naturally, there are many texts on human vision – one popular text on human visual perception 

(and its relationship with visual art) is by Livingstone [Livingstone14]; there is an online book: The 

Joy of Vision (http://www.yorku.ca/eye/thejoy.htm) – useful, despite its title! Marr’s seminal text 

[Marr82] is a computational investigation into human vision and visual perception, investigating it 

from a computer vision viewpoint. For further details on pattern processing in human vision, see 

[Bruce90]; for more illusions see [Rosenfeld82] and an excellent – and dynamic – collection at 

https://michaelbach.de/ot. Many of the properties of human vision are hard to include in a computer 

vision system, but let us now look at the basic components that are used to make computers see. 

 

1.4  Computer Vision Systems 

Given the progress in computer technology and domestic photography, computer vision hardware 

is now relatively inexpensive; a basic computer vision system requires a camera, a camera interface 

and a computer. These days, many personal computers offer the capability for a basic vision system, 

by including a camera and its interface within the system. There are specialised systems for 

computer vision, offering high performance in more than one aspect. These can be expensive, as 

any specialist system is.  

1.4.1  Cameras 

A camera is the basic sensing element. In simple terms, most cameras rely on the property of light 

to cause hole/electron pairs (the charge carriers in electronics) in a conducting material. When a 

potential is applied (to attract the charge carriers), this charge can be sensed as current. By Ohm’s 

law, the voltage across a resistance is proportional to the current through it, so the current can be 

turned in to a voltage by passing it through a resistor. The number of hole/electron pairs is 

proportional to the amount of incident light. Accordingly, greater charge (and hence greater voltage 

and current) is caused by an increase in brightness. In this manner cameras can provide as output, 

a voltage which is proportional to the brightness of the points imaged by the camera.  
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(a) passive (b) active 

Figure 1.9 Pixel sensors 

There are three main types of camera: vidicons, charge coupled devices (CCDs) and, later, 

CMOS cameras (Complementary Metal Oxide Silicon - now the dominant technology for logic 

circuit implementation). Vidicons are the old (analogue) technology, which though cheap (mainly 

by virtue of longevity in production) have largely been replaced by the newer CCD and CMOS 

digital technologies. The digital technologies now dominate much of the camera market because 

they are lightweight and cheap (with other advantages) and are therefore used in the domestic video 

market.  

http://www.yorku.ca/eye/thejoy.htm
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Vidicons operate in a manner akin to an old television in reverse. The image is formed on a 

screen, and then sensed by an electron beam that is scanned across the screen. This produces an 

output which is continuous, the output voltage is proportional to the brightness of points in the 

scanned line, and is a continuous signal, a voltage which varies continuously with time. On the 

other hand, CCDs and CMOS cameras use an array of sensors; these are regions where charge is 

collected which is proportional to the light incident on that region. This is then available in discrete, 

or sampled, form as opposed to the continuous sensing of a vidicon. This is similar to human vision 

with its array of cones and rods, but digital cameras use a rectangular regularly spaced lattice 

whereas human vision uses a hexagonal lattice with irregular spacing.  

Two main types of semiconductor pixel sensors are illustrated in Figure 1.9. In the passive 

sensor, the charge generated by incident light is presented to a bus through a pass transistor. When 

the signal Tx is activated, the pass transistor is enabled and the sensor provides a capacitance to the 

bus, one that is proportional to the incident light. An active pixel includes an amplifier circuit that 

can compensate for the limited fill factor of the photodiode. The select signal again controls 

presentation of the sensor's information to the bus.  A further reset signal allows the charge site to 

be cleared when the image is re-scanned. 

 

Figure 1.10 CCD sensing element 

The basis of a CCD sensor is illustrated in Figure 1.10. The number of charge sites gives the 

resolution of the CCD sensor; the contents of the charge sites (or buckets) need to be converted to 

an output (voltage) signal. In simple terms, the contents of the buckets are emptied into vertical 

transport registers which are shift registers moving information towards the horizontal transport 

registers. This is the column bus supplied by the pixel sensors. The horizontal transport registers 

empty the information row by row (point by point) into a signal conditioning unit which transforms 

the sensed charge into a voltage which is proportional to the charge in a bucket, and hence 

proportional to the brightness of the corresponding point in the scene imaged by the camera. CMOS 

cameras are like a form of memory: the charge incident on a particular site in a two-dimensional 

lattice is proportional to the brightness at a point. The charge is then read like computer memory. 

(In fact, a computer memory RAM chip can act as a rudimentary form of camera when the circuit 

- the one buried in the chip - is exposed to light.) 
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There are many more varieties of vidicon (Chalnicon etc.) than there are of CCD technology 

(Charge Injection Device etc.), perhaps due to the greater age of basic vidicon technology. Vidicons 

are cheap but have a number of intrinsic performance problems. The scanning process essentially 

relies on ‘moving parts’. As such, the camera performance will change with time, as parts wear; 

this is known as ageing. Also, it is possible to burn an image into the scanned screen by using high 

incident light levels; vidicons can also suffer lag that is a delay in response to moving objects in a 

scene. On the other hand, the digital technologies are dependent on the physical arrangement of 

charge sites and as such do not suffer from ageing, but can suffer from irregularity in the charge 

sites’ (silicon) material. The underlying technology also makes CCD and CMOS cameras less 

sensitive to lag and burn, but the signals associated with the CCD transport registers can give rise 

to readout effects. CCDs actually only came to dominate camera technology when technological 

difficulty associated with quantum efficiency (the magnitude of response to incident light) for the 

shorter, blue, wavelengths were solved. One of the major problems in CCD cameras is blooming 

where bright (incident) light causes a bright spot to grow and disperse in the image (this used to 

happen in the analog technologies too). This happens much less in CMOS cameras because the 

charge sites can be much better defined and reading their data is equivalent to reading memory sites 

as opposed to shuffling charge between sites. Also, CMOS cameras have now overcome the 

problem of fixed pattern noise that plagued earlier MOS cameras. CMOS cameras are actually 

much more recent than CCDs. This begs a question as to which is best: CMOS or CCD? An early 

view was that CCD could provide higher quality images whereas CMOS is a cheaper technology 

and because it lends itself directly to intelligent cameras with on-board processing. The feature size 

of points (pixels) in a CCD sensor is limited to be about 4 m so that enough light is collected. In 

contrast, the feature size in CMOS technology is considerably smaller. It is then possible to integrate 

signal processing within the camera chip and thus it is perhaps possible that CMOS cameras will 

eventually replace CCD technologies for many applications. However, modern CCDs’ process 

technology is more mature, so the debate will doubtless continue! 

Finally, there are specialist cameras, which include high-resolution devices (giving pictures with 

many points), low-light level cameras which can operate in very dark conditions and infrared 

cameras which sense heat to provide thermal images; hyperspectral cameras have more sensing 

bands. For more detail concerning modern camera practicalities and imaging systems see 

[Nakamura05] and more recently [Kuroda14]. For more detail on sensor development, particularly 

CMOS, [Fossum97] is still well worth a look. For more detail on images see [Phillips18] with a 

particular focus on quality (hey - there is even mosquito noise!). 

A light field – or plentoptic - camera is one that can sense depth as well as brightness 

[Adelson05]. The light field is essentially a two dimensional set of spatial images, thus giving a 4-

dimensional array of pixels. The light field can be captured in a number of ways, by moving 

cameras, or multiple cameras. The aim is to capture the plenoptic function that describes the light 

as a function of position, angle, wavelength and time [Wu17]. These days, commercially available 

cameras use lenses to derive the light field. These can be used to render an image into full depth of 

plane focus (imagine an image of an object taken at close distance where only the object is in focus 

combined with an image where the background is in focus to give an image where both the object 

and the background are in focus).  A surveillance operation could focus on what is behind an object 

which would show in a normal camera image. This gives an alternative approach to 3D object 

analysis, by sensing the object in 3D. Wherever there are applications, industry will follow, and 

that has proved to be the case.  

There are new dynamic vision sensors which sense motion [Lichtsteiner08, Son17] and are much 

closer to the starting grid than the light field cameras. Clearly, the resolution and speed continue to 

improve, and there are applications emerging that use these sensors. We shall find in Chapters 4 

and 9 it is possible to estimate motion from sequences of images. These sensors are different, since 
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they specifically target motion. As the target application is security (much security video is dull 

stuff indeed, with little motion) allowing recording only of material of likely interest.  

 

1.4.2  Computer Interfaces 

Though digital cameras continue to advance there are still some legacies from the older analog 

systems to be found in the some digital systems. There is also some older technology in deployed 

systems. As such, we shall cover the main points of the two approaches. Essentially, the image 

sensor converts light into a signal which is expressed either as a continuous signal, or in sampled 

(digital) form. Some (older) systems expressed the camera signal as an analog continuous signal, 

according to a standard and this was converted at the computer (and still is in some cases, using a 

framegrabber). Modern digital systems convert the sensor information into digital information with 

on-chip circuitry and then provide the digital information according to a specified standard. The 

older systems, such as surveillance systems, supplied (or supply) video whereas the newer systems 

are digital. Video implies delivering the moving image as a sequence of frames of which one format 

is Digital Video – DV.  

An analog continuous camera signal is transformed into digital (discrete) format using an 

Analogue to Digital (A/D) converter. Flash converters are usually used due to the high speed 

required for conversion (say 11 MHz that cannot be met by any other conversion technology).  

Usually, 8-bit A/D converters are used; at 6dB/ bit, this gives 48dB which just satisfies the CCIR 

stated bandwidth of approximately 45dB. The outputs of the A/D converter are then stored. Note 

that there are aspects of the sampling process which are of considerable interest in computer vision; 

these are covered in Chapter 2. 

In digital camera systems this processing is usually performed on the camera chip, and the 

camera eventually supplies digital information, often in coded form Currently, Thunderbolt is the 

hardware interface that dominates the high end of the market and USB is used at the lower end. 

There was a system called Firewire but it has now faded. Images are constructed from a set of lines, 

those lines scanned by a camera. In the older analog systems, in order to reduce requirements on 

transmission (and for viewing), the 625 lines (in the PAL system, NTSC is of lower resolution) were 

transmitted in two interlaced fields, each of 312.5 lines, as illustrated in Figure 1.11. These were 

the odd and the even fields. Modern televisions are progressive scan, which is like reading a book: 

the picture is constructed line by line. There is also an aspect ratio in picture transmission: pictures 

are arranged to be longer than they are high. These factors are chosen to make television images 

attractive to human vision.  Nowadays, digital video cameras can provide digital output, in 

progressive scan delivering sequences of images that are readily processed. There are Gigabit 

Ethernet cameras which transmit high speed video and control information over Ethernet networks. 

Or there are webcams, or just digital camera systems that deliver images straight to the computer. 

Life just gets easier! 
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Figure 1.11 Interlacing in television pictures 

 

1.5  Processing Images 

We shall be using software and packages to process computer images. There are many 

programming languages and we have chosen Python as perhaps the most popular language at the 

time of writing. Several mathematical systems allow you to transpose mathematics more easily 

from textbooks, and see how it works. Code functionality is not obscured by the use of data 

structures, though this can make the code appear cumbersome (to balance though, the range of 

datatypes is invariably small). A major advantage of processing packages is that they provide the 

low-level functionality and data visualisation schemes, allowing the user to concentrate on 

techniques alone. Accordingly, these systems afford an excellent route to understand, and 

appreciate, mathematical systems prior to development of application code, and to check the final 

code works correctly. The packages are however less suited to the development of application code. 

Chacun à son gout! 

The code that supports this book has been written for educational purposes only. We encourage 

you to use it for that purpose, for that is one of the best ways of learning. It is written for clarity, 

aiming to support the text here, and is not optimised in any way. You might use the code elsewhere: 

you are welcome, naturally, though we admit no liability of any form. Our target here is education, 

and nothing else. 

1.5.1  Processing  

Most image processing and computer vision techniques are implemented in computer software. 

Often, only the simplest techniques migrate to hardware; though coding techniques to maximise 

efficiency in image transmission are of sufficient commercial interest that they have warranted 

extensive, and very sophisticated, hardware development. The systems include the Joint 

Photographic Expert Group  (JPEG) and the Moving Picture Expert Group (MPEG) image coding 

formats. C, C++, Python and JavaTM are by now the most popular languages for vision system 

implementation, because of strengths in integrating high- and low-level functions, and the 

availability of good compilers. As systems become more complex, C++, Python and Java become 

more attractive when encapsulation and polymorphism may be exploited. Many people use Python 

and JAVA as a development language partly due to platform independence, but also due to ease in 

implementation (though some claim that speed/ efficiency is better in C/C++). Python is currently 
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a language of choice, not for any specific reasons. Some are up and coming, so there are advocates 

for JULIA too. There are some textbooks that offer image processing systems implemented in these 

languages. Also, there are many commercial packages available, though these are often limited to 

basic techniques, and do not include the more sophisticated shape extraction techniques – and the 

underlying implementation can be hard to check. Some popular texts present working algorithms, 

such as [O’Gorman08], [Parker10] and [Solem12]. 

In terms of software packages, the most popular is OpenCV (Open Source Computer Vision) 

whose philosophy is to “aid commercial uses of computer vision in human-computer interface, 

robotics, monitoring, biometrics and security by providing a free and open infrastructure where the 

distributed efforts of the vision community can be consolidated and performance optimized”. This 

contains a wealth of technique and (optimised) implementation – there’s a Wikipedia entry and a 

discussion website supporting it. The system has now moved to OpenCV 4. That means there were 

versions 1, 2 and 3 and unfortunately the systems are not compatible. The first textbook describing 

its use [Bradski08] had/has excellent descriptions of how to use the code (and some great diagrams) 

but omitted much of the (mathematical) background and analysis so it largely describes usage rather 

than construction. There are more recent texts for OpenCV, but the reviews are mixed: the web is 

a better source of reference for implementation material and systems that are constantly updated.  

 Then there are the VXL libraries (the Vision-something-Libraries, groan). This is “a collection 

of C++ libraries designed for computer vision research and implementation”. The CImg Library 

(another duff acronym: it derives from Cool Image) is a system aimed to be easy to use, efficient, 

and a generic base for image processing algorithms. VLFeat is “a cross-platform open source 

collection of vision algorithms with a special focus on visual features”. Finally, there is 

Southampton’s OpenIMAJ which has lots of functional capabilities and is supported by tutorials 

and user data (as are all the other packages). Note that these packages are open source, and there 

are licences and conditions on use and exploitation. Web links are shown in Table 1.2.  

 

OpenCV (originally Intel) opencv.org/  

VXL  Many international contributors vxl.github.io  

CImg Many international contributors sourceforge.net/projects/cimg/ 

VLFeat Oxford and UCLA vlfeat.org/  

OpenIMAJ Southampton openimaj.org 

Table 1.2 Software packages for computer vision 

 

1.5.2  Hello Python, Hello Images! 

We shall be using Python as our main vehicle for processing images. It is now a dominant language 

and it is quite mature. Mark first encountered it a long time ago when we used it to arrange the 

conference proceedings of the British Machine Vision Conference BMVC 1998 and that was 

Python 1 (we also used Adobe 3.1). It has clearly moved from strength to strength, part by virtue 

of simplicity and part by virtue of some excellent engineering. This is not a textbook on 

programming in Python and for that you would best look elsewhere, e.g. [Lutz13] is a well proven 

text. Here we are using Python as a vehicle to show how algorithms can be made to work. For that 

reason, it’s not a style guide either. 

Python is a scripting programming language that was developed to provide clear and simple 

code. It is also very general, it runs on many platforms and it has comprehensive standard libraries. 

Here, we use Python to show how the maths behind machine vision techniques can be translated 

https://opencv.org/
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into working algorithms. In general, there are several levels at which you can understand a 

technique. It is possible to understand the basic ideas by studying the meaning and aims of a method 

that your program calls from a library. You can also understand a more formal definition by 

studying the mathematics that support the ideas. Alternatively, you can understand a technique as 

a series of steps that define an algorithm that processes some data. In this book, we discuss the 

formal ideas with mathematical terms and then present a more practical approach by including 

algorithms derived from the mathematical formulation.  

However, presenting working algorithms is not straightforward and we have puzzled on how to 

code without ending up with a lot of wrapper material that can obscure functionality or whether to 

go to the other extreme and just end up calling a function from a package. There again, one could 

argue that it’s best to accommodate complex code in the support material, and show its operations 

in the book. However, that could limit functionality, performance and complexity. Today’s 

implementations of machine vision algorithms include concepts like multi-threading and GPU 

processing. Implementations follow object oriented, functional or procedural definitions that 

organize computations in complex and efficient data structures. They also include specific code to 

improve robustness. In order to keep the scope manageable and for clarity, the code in this book is 

limited to the main steps of algorithms. However, you should be able to understand and develop 

more complex implementations once you have the knowledge of the basic approach. 

If you want to execute the presented code, you will need to set up Python, install some Python 

packages and set up the book’s scripts. There are several ways to set up a Python environment and 

we provide setup instructions on the book’s website. The scripts presented in this book do not call 

Python packages directly, but through two utility scripts (ImageSupport and PlotSupport) 

that wrap the basic image manipulations and drawing functionalities. The main idea is to present 

the code independently of software for drawing and loading images. You can either execute the 

scripts using the ImageSupport and PlotSupport definitions provided or you can implement 

similar utilities by using alternative Python libraries. 

ImageSupport implements functions for reading, showing or creating images. 

PlotSupport implements functions for drawing surfaces, curves and histograms. The scripts in 

this book contain imports from these two utility files. In our implementation, ImageSupport 

uses pillow (a ‘friendly’ Python Imaging Library fork no less) for loading and saving images and 

Numpy to define arrays for image data. PlotSupport uses Numpy since it requires image data 

and it also uses Matplotlib for drawing. Thus, if you use the support utilities, you need to install 

PIL, Numpy and Matplot and set your environment path such that scripts can access 

ImageSupport and PlotSupport utilities.  

 
# Feature Extraction and Image Processing 

# Mark S. Nixon & Alberto S. Aguado 

# Code1_1_Imagedisplay.py: Loads, inverts and displays an image.  

# Shows image as a surface and prints pixel data 

 

# Set utility folder 

import sys 

sys.path.insert(0, '../Utilities/') 

 

# Set utility functions 

from ImageSupport import imageReadL, showImageL, printImageRangeL, createImageF 

from PlotSupport import plot3DColorHistogram 

 

''' 

Parameters: 

    pathToDir = Input image directory 

    imageName = Input image name 

''' 

pathToDir = "Input/" 

imageName = "Square.png" 
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# Read image into array 

inputImage, width, height = imageReadL(pathToDir + imageName) 

 

# Show input image 

showImageL(inputImage) 

 

# Print pixel's values in an image range 

printImageRangeL(inputImage, [0, width-1], [0, height-1]) 

 

# Create an image to store the z values for surface 

outputZ = createImageF(width, height) 

 

# Three float arrays to store colours of the surface 

colorsRGB = createImageF(width, height, 3) 

 

# Set surface and colour values 

for x in range(0, width): 

    for y in range(0, height): 

        pixelValue = float(inputImage[y,x]) 

        outputZ[y,x] = pixelValue 

        pointColour = float(inputImage[y,x])/255.0 

        colorsRGB[y,x] = [pointColour, pointColour, pointColour] 

Fig 1.1A in colour 

# Plot histogram to show image 

plot3DColorHistogram(outputZ, colorsRGB, [0,400]) 

 

Code 1.1 Load, invert and display an image  

 

In addition to image and plot support, scripts also import functions from other utility files. This 

is done in the code in this book to show all the steps in an implementation algorithm whilst avoiding 

repetition. For example, a technique such as edge detection will be shown as a script with all the 

steps of the algorithm. When edge detection is used in more complex algorithms such as corner 

detection, the corner detection algorithm will just call a function to perform the edge detection 

steps. Thus, you will find the edge detection code as a script in an algorithm or as a utility function. 

The algorithm functions are organized by chapter, so FourierTransformUtilities defines 

functions for the scripts explained in Chapter 2 and FeatureExtractionUtilities for 

functions in Chapter 4. The code in the utilities is similar to the code explained in other parts of the 

book.  

Code 1.1 shows our first example of a Python script. This script is used to visualize an image in 

different forms. It loads and displays an image, it prints the pixels' values and it shows the image 

as a surface. To run this code (from, say, the directory c:\imagebook\ with the images stored 

in c:\imagebook\input\) then in the command line type 

Python Code1_1_Imagedisplay.py and it will run and produce images. The first lines of 

the script set the path to the directory of the utilities. Scripts in other chapters will omit these lines, 

but you need to set the environment in your system to access the utility files. The next part of the 

script imports the functions that we use for image handling and plotting. Then, we set the variables 

that define the parameters of the algorithm. In this case, the file name of the image we want to 

display. The utility function imageReadL reads an image and stores the data in an array (a matrix) 

of grey level values. The storage of image pixel data is first covered in the next Chapter, Section 

2.2. The function returns an array containing a single grey level value uint8 (8-bit unsigned 

integer) per pixel and the size of the image. The function showImageL displays an image on the 

screen as shown in Figure 1.13(a). In this example, the image is very small (12×12 pixels), so we 

can see the pixels as squares. The script uses the utility function printImageRangeL to display 

the values of the pixels in matrix form as shown in Figure 1.13(b). Note that the outer rows and 
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columns are nearly white with some slight variation – this variation cannot be perceived in the 

displayed image.  

In order to display images as surfaces, the script in Code 1.1 creates images that store the height 

and the colour for each surface sample. The function createImageF creates an array of floats 

(floating point numbers) and its last parameter defines the number of floats per pixel. In this 

example, we create a one-dimensional array to store the height value of the surface and a three-

dimensional array to store the colour. The arrays are filled by using the data in the input image in 

two nested loops. Notice that indentation is used to define the scope of each loop and that image 

data is accessed in in [row][column] format. In a grey level image, the maximum value is 255 which 

corresponds to white. Colour is a complex topic studied next in Section 2.2 and later in detail in 

Chapter 11 – we need colour here to show the images. We set the height to be larger for brighter 

pixels. The colour array gives the same value to the red, green and blue components, so it defines 

values of grey that correspond to the pixel grey value.  The script uses the utility function 

plot3DColorHistogram to draw a discrete surface as shown in Figure 1.13(c). 

 

 

 
(a) image (b) pixel values 

 
(c) discrete surface 

Figure 1.12 Python image visualization 

 
# Feature Extraction and Image Processing  

# Mark S. Nixon & Alberto S. Aguado 

# Chapter 1: Image brightening 

 

# Set utility folder 
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import sys 

sys.path.insert(0, '../Utilities/') 

 

# Iteration 

from timeit import itertools 

 

# Set utility functions 

from ImageSupport import imageReadL, showImageL, printImageRangeL, createImageL 

 

''' 

Parameters: 

    pathToDir = Input image directory 

    imageName = Input image name 

    brightDelta = Increase brightness 

    printRange = Image range to print 

''' 

pathToDir = "Input/" 

imageName = "Zebra.png" 

brightDelta = 80; 

printRange = [0, 10] 

 

# Read image into array and create and output image 

inputImage, width, height = imageReadL(pathToDir + imageName) 

outputImage = createImageL(width, height) 

 

# Set the pixels in the output image 

for x,y in itertools.product(range(0, width), range(0, height)): 

    outValue = int(inputImage[y,x]) + brightDelta  

    if outValue < 255: 

        outputImage[y,x] = outValue  

    else: 

        outputImage[y,x] = 255 

 

# Show images 

showImageL(inputImage) 

showImageL(outputImage) 

 

# Print image range 

printImageRangeL(inputImage, printRange, printRange) 

printImageRangeL(outputImage, printRange, printRange) 

 

Code 1.2 Image brightening 

 

The script in Code 1.2 illustrates the way data in an image array is processed. The script uses the 

function createImageL to create a grey level image that contains the processed data. In addition 

to the name of the image, the script has two variables that are used as parameters. brightDelta 

defines an amount that is added to the input pixel to produce an output pixel and printRange 

defines a range of pixels that are printed out. Similar to Code 1.1, the script iterates through all the 

values of the input image by addressing the columns from 0 to width, and the rows from 0 to height. 

However, Code 1.2 defines the two nested loops in a single line by using the function 

itertools.product imported from timeit. Both the iterative and the nested loops have 

the same functionality. This book uses the iterator to perform nested loops to reduce indentation 

and keep the code clearer. Inside the loop, the output pixels ( ),q x y result from adding bright to some 

input pixels ( ),p x y as 

 ( ) ( ), , brightq x y p x y= +  (1.1) 

In code, this is computed as the value of the input pixel plus the value of brightDelta. There is 

some jacketing software which prevents values exceeding 255 – if the result of addition exceeds 

this then the value stops at 255. This is one large difference between describing algorithms as maths 
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and as code – some of the code never appears in the maths but is necessary to make the maths work 

correctly. Figure 1.14 shows the result of the script. The figure shows the input and the resulting 

image as well as some of the pixel values in matrix form. 

 

  
(a) a region of the image (b) processed values in the same region 

  
(c) original image (d) processed image 

Figure 1.13 Processing an image in Python 

 
 

1.5.3  Mathematical Tools 

Mathematica, Maple and Matlab are amongst the most popular of current mathematical systems, 

and Mathcad was used in earlier editions of this book. There have been surveys that compare their 

efficacy, but it is difficult to ensure precise comparison due to the impressive speed of development 

of techniques. Most systems have their protagonists and detractors, as in any commercial system. 

There are many books which use these packages for particular subjects, and there are often 

handbooks as addenda to the packages. We shall use Matlab throughout this text, aiming to expose 

the range of systems that are available. Matlab dominates this market these days, especially in image 

processing and computer vision, and its growth rate has been enormous; older versions of this text 

used Mathcad which was more sophisticated (and WYSWYG) but had a more chequered 

commercial history. Note that there is an open source compatible system for Matlab called Octave. 

This is of course free. Most universities have a site license for Matlab and without that it can be 

rather (too) expensive for many. The web links for the main mathematical packages are given in 

Table 1.3. 

 

 General  

Guide to available 

Mathematical Software  

NIST gams.nist.gov/   

https://gams.nist.gov/


Feature Extraction and Image Processing in Computer Vision 

 20 

Vendors 

Mathcad Parametric Technology Corp. ptc.com/en/products/Mathcad   

Mathematica Wolfram Research wolfram.com/  

Matlab Mathworks mathworks.com/  

Maple Maplesoft maplesoft.com/  

Matlab Compatible 

Octave Gnu (Free Software Foundation) gnu.org/software/octave/ 

Table 1.3 Mathematical package websites 

 

1.5.4  Hello Matlab 

For those who are less enamoured with programming we shall use the Matlab package to 

accompany Python. Matlab offers a set of mathematical tools and visualisation capabilities in a 

manner arranged to be very similar to conventional computer programs. The system was originally 

developed for matrix functions, hence the 'Mat' in the name.   There are a number of advantages to 

Matlab, not least the potential speed advantage in computation and the facility for debugging, 

together with a considerable amount of established support.  There is an image processing toolkit 

supporting Matlab, but it is rather limited compared with the range of techniques exposed in this 

text. Matlab’s popularity is reflected in a book dedicated to its use for image processing 

[Gonzalez09], by perhaps one of the subject’s most popular authors. It is of note that many 

researchers make available Matlab versions for others to benefit from their new techniques. 

The Octave open source compatible system was built mainly with Matlab compatibility in mind. 

It shares a lot of features with Matlab such as using matrices as the basic data type, with availability 

of complex numbers and built in functions as well the capability for user-defined functions. There 

are some differences between Octave and Matlab, and there is extensive support for both. We shall 

refer to both systems using Matlab as a general term. 

Essentially, Matlab is the set of instructions that process the data stored in a workspace, which 

can be extended by user-written commands.  The workspace stores the different lists of data and 

these data can be stored in a MAT file; the user-written commands are functions that are stored in 

M-files (files with extension .M).  The procedure operates by instructions at the command line to 

process the workspace data using either one of Matlab’s own commands, or using your own 

commands.  The results can be visualised as graphs, surfaces or as images. 

Matlab provides powerful matrix manipulations to develop and test complex implementations. 

In this book, we avoid matrix implementations in favour of a more C++ algorithmic form. Thus, 

matrix expressions are transformed into loop sequences. This helps students without experience in 

matrix algebra to understand and implement the techniques without dependency on matrix 

manipulation software libraries. Implementations in this book only serve to gain understanding of 

the techniques’ performance and correctness, and favour clarity rather than speed.  

Matlab processes images, so we need to know what an image represents. Images are spatial data, 

which is data that is indexed by two spatial co-ordinates. The camera senses the brightness at a 

point with co-ordinates x,y. Usually, x and y refer to the horizontal and vertical axes, respectively. 

Throughout this text we shall work in orthographic projection, ignoring perspective, where real 

world co-ordinates map directly to x and y co-ordinates in an image. The homogeneous co-ordinate 

system is a popular and proven method for handling three-dimensional co-ordinate systems (x, y 

and z where z is depth), though it will not be used here as we shall process two-dimensional images 

https://www.wolfram.com/
https://www.mathworks.com/
https://www.maplesoft.com/
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only. The brightness sensed by a camera is transformed to a signal which is and stored as a value 

within the computer, referenced to the co-ordinates x,y in the image. Accordingly, a computer 

image is a matrix of points. For a greyscale image, the value of each point is proportional to the 

brightness of the corresponding point in the scene viewed by the camera. These points are the 

picture elements, or pixels. 

 

              

 0 0 0 0 1 2 2 1 0 0 0 0  

 0 0 6 16 23 26 26 23 16 6 0 0  

 0 24 76 185 223 235 235 223 185 76 24 0  

 0 24 76 185 223 235 235 223 185 76 24 0  

 0 24 76 185 223 235 235 223 185 76 24 0  

 2 26 83 197 235 246 246 235 197 83 26 2  

 2 26 83 197 235 246 246 235 197 83 26 2  

 0 24 76 185 223 235 235 223 185 76 24 0  

 0 24 76 185 223 235 235 223 185 76 24 0  

 0 24 76 185 223 235 235 223 185 76 24 0  

 0 0 6 16 23 26 26 23 16 6 0 0  

 0 0 0 0 1 2 2 1 0 0 0 0  

              

(a) set of pixel values 

  

(b) Matlab image  (c) Matlab surface plot 

Figure 1.14 Matlab image visualisation 

 
  
%read in an image 

a=imread('Input\Square.png'); 

%view image 

imagesc(a); 

%view it in black and white 

disp ('We shall  display the data as a grey level image') 

colormap(gray); 

% Let's hold so we can view it 

disp ('When you are ready to move on, press RETURN') 
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pause; 

disp ('Now we shall display the data as a surface') 

bar3(a); 

 

Code 1.3 Example Matlab script 

Consider for example, the set of pixel values in Figure 1.14(a). These values were derived from 

the image of a bright peak on a dark background. The peak is brighter where the pixels have a larger 

value (here over 200 brightness levels); the background is dark and those pixels have a smaller 

value (near 0 brightness levels). (We shall consider how many points we need in an image and the 

possible range of values for pixels in Chapter 2.) The peak can be viewed as an image in Figure 

1.14(b), or as a surface in Figure 1.14(c).  

As in the Python code, there are considerably more sophisticated systems and usage than this 

version of Matlab code. Like Python in Section 1.5.2, our aim here is not to show people how to 

use Matlab and all its wonderful functionality. We are using the simplest versions with default 

settings so that people can process images quickly and conveniently. The Matlab code might appear 

clearer than the Python code. It is, but that is at the cost of access to data and Python has much 

greater freedom there. One can get to Manchester from London using a Mini or a Rolls Royce: the 

style is different (and the effect on the environment is different….) but the result is the same. That 

is how we shall use Python and Matlab in this textbook. 

Matlab runs on Unix/Linux, Windows and Macintosh systems; a student version is available.  

We shall use a script, to develop our approaches, which is the simplest type of M-file, as illustrated 

in Code 1.3. To start the Matlab system, type MATLAB at the command line.  At the Matlab prompt 

(>>) type chapter1 to load and run the script (given that the file Code_1_3.m is saved in 

the directory you are working in). Alternatively, open the directory containing Code_1_3.m and 

click on it to run it.  Comments are preceded by a %; we first read in an image. Having set the 

display facility to black and white, we can view the array of points a as a surface.  When the image, 

illustrated in Figure 1.14(b), has been plotted, then Matlab has been made to pause until you press 

Return before moving on.  Here, when you press Return, you will next see the surface of the 

array, Figure 1.14(c). 

 
 

function inverted = invert(image) 

 

% Subtract image point brightness from maximum 

% Usage: new image = invert(old image) 

% Parameters: image      - array of points  

  

[rows,cols]=size(image); % get dimensions 

  

maxi = max(max(image)); % find the maximum 

  

% subtract image points from maximum 

for x = 1:cols %address all columns 

  for y = 1:rows %address all rows 

    inverted(y,x)=maxi-image(y,x); 

  end 

end 

 

Code 1.4 Matlab function invert.m to invert an Image 
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We can use Matlab’s own command to interrogate the data: these commands find use in the M-files 

that store subroutines. An example routine is called after this. This subroutine is stored in a file 

called invert.m and is a function that inverts brightness by subtracting the value of each point 

from the array’s maximum value.  The code is illustrated in Code 1.4.  Note that this code uses for 

loops which are best avoided to improve speed, using Matlab's vectorised operations. The whole 

procedure can actually be implemented by the command inverted =max(max(pic))-pic.  

In fact, one of Matlab's assets is a ‘profiler’ which allows you to determine exactly how much time 

is spend on different parts of your programs.  Naturally, there is facility for importing graphics files, 

which is quite extensive (i.e., it accepts a wide range of file formats).  When images are used we 

find that Matlab has a range of datatypes.  We must move from the unsigned integer datatype, used 

for images, to the double precision datatype to allow processing as a set of real numbers. (Matlab 

does make this rather easy, and can handle complex numbers with ease too.) In these ways Matlab 

can, and will be used to process images throughout this book, with the caveat that this is not a book 

about Matlab (or Python). Note that the translation to application code is perhaps easier via Matlab 

than for other systems and it offers direct compilation of the code.  There are some Matlab scripts 

available at the book’s website (https://www.southampton.ac.uk/~msn/book/) for on-line tutorial 

support of the material in this book. As with the caveat earlier, these are provided for educational 

purposes only. There are many other implementations of techniques available on the Web in 

Matlab.  The edits required to make the Matlab worksheets run in Octave are described in the file 

readme.txt in the downloaded zip. 

1.6  Associated Literature 

1.6.1  Journals, Magazines and Conferences 

As in any academic subject, there are many sources of literature and when used within this text the 

cited references are to be found at the end of each chapter. The professional magazines include 

those that are more systems oriented, like Vision Systems Design. These provide more general 

articles, and are often a good source of information about new computer vision products. For 

example, they survey available equipment, such as cameras and monitors, and provide listings of 

those available, including some of the factors by which you might choose to purchase them.  

There is a wide selection of research journals - probably more than you can find in your nearest 

library unless it is particularly well-stocked. These journals have different merits: some are targeted 

at short papers only, whereas some have short and long papers; some are more dedicated to the 

development of new theory whereas others are more pragmatic and focus more on practical, 

working, image processing systems. But it is rather naive to classify journals in this way, since all 

journals welcome good research, with new ideas, which has been demonstrated to satisfy promising 

objectives.  

The main research journals include: IEEE Transactions on: Pattern Analysis and Machine 

Intelligence (in later references this will be abbreviated to IEEE Trans. on PAMI); Image 

Processing (IP); Systems, Man and Cybernetics (SMC); and on Medical Imaging (there are many 

more IEEE transactions, e.g. the IEEE Transactions on Biometrics, Behavior and Identity Science, 

which sometimes publish papers of interest in, or application of, image processing and computer 

vision). The IEEE Transactions are usually found in (university) libraries since they are available 

at comparatively low cost; they are online to subscribers at the IEEE Explore site 

(ieeexplore.ieee.org/) and this includes conferences. Computer Vision and Image Understanding 

and Graphical Models and Image Processing arose from the splitting of one of the subject’s earlier 

journals, Computer Vision, Graphics and Image Processing (CVGIP), into two parts. Do not 

confuse Pattern Recognition (Pattern Recog.) with Pattern Recognition Letters (Pattern Recog. 

Lett.), published under the aegis of the Pattern Recognition Society and the International 

https://www.southampton.ac.uk/~msn/book/
http://ieeexplore.ieee.org/
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Association of Pattern Recognition, respectively, since the latter contains shorter papers only. The 

International Journal of Computer Vision and Image and Vision Computing are well established 

journals too. Finally, do not miss out on the IET Computer Vision and other journals. 

Most journals are now on-line but usually to subscribers only; some go back a long way. 

Academic Press titles include Computer Vision and Image Understanding, Graphical Models and 

Image Processing and Real-Time Image Processing.  

There are plenty of conferences too: the proceedings of IEEE conferences are also held on the 

Explore site and two of the top conferences are Computer Vision and Pattern Recognition (CVPR) 

which is held annually in the USA, the International Conference on Computer Vision (ICCV) is 

biennial and moves internationally. The IEEE also hosts specialist conferences, e.g. on biometrics 

or on computational photography. Lecture Notes in Computer Science are hosted by Springer 

(springer.com) and are usually the proceedings of conferences. Some conferences such as the 

British Machine Vision Conference series maintain their own site (bmva.org). The excellent 

Computer Vision Conferences page conferences.visionbib.com/Iris-Conferences.html is brought to 

us by Keith Price and lists conferences in Computer Vision, Image Processing and Pattern 

Recognition. 

1.6.2  Textbooks 

There are many textbooks in this area. Increasingly, there are web versions, or web support, as 

summarised in Table 1.4. The difficulty is of access as you need a subscription to be able to access 

the online book (and sometimes even to see that it is available online), though there are also Kindle 

versions. For example, this book is available online to those subscribing to Referex in Engineering 

Village engineeringvillage.org. The site given in Table 1.4 for this book is the support site which 

includes demonstrations, worksheets, errata and other information. The site given next, at 

Edinburgh University UK, is part of the excellent CVOnline site (many thanks to Bob Fisher there) 

and it lists current books as well pdfs of which some are more dated, but still excellent (e.g. 

[Ballard82]). There is also continuing debate on appropriate education in image processing and 

computer vision, for which review material is available [Bebis03]. 

For support material, the World of Mathematics comes from Wolfram research (the distributors 

of Mathematica) and gives an excellent web based reference for mathematics. Numerical Recipes 

[Press07] is one of the best established texts in signal processing. It is beautifully written, with 

examples and implementation and is on the web too. Digital Signal Processing is an online site 

with focus on the more theoretical aspects which will be covered in Chapter 2. The Joy of Visual 

Perception is an online site on how the human vision system works. We haven’t noted Wikipedia 

– computer vision is there too. 

By way of context, for comparison with other textbooks, this text aims to start at the foundation 

of computer vision, and to reach current research. Its content specifically addresses techniques for 

image analysis, considering feature extraction and shape analysis in particular. Matlab and Python 

are used as vehicles to demonstrate implementation. There are of course other texts, and these can 

help you to develop your interest in other areas of computer vision. 

 

This book's 

homepage 

Southampton 

University 

https://www.southampton.ac.uk/~msn/book/ 

CVOnline – online 

book compendium 

Edinburgh 

University 

homepages.inf.ed.ac.uk/rbf/CVonline/books.htm  

World of 

Mathematics 

Wolfram 

Research 

mathworld.wolfram.com 

http://www.springer.com/
http://www.bmva.org/
http://www.engineeringvillage.org/
https://www.southampton.ac.uk/~msn/book/
http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
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Numerical Recipes Cambridge 

University Press 

numerical.recipes 

Digital Signal 

Processing 

Steven W. Smith dspguide.com 

The Joy of Visual 

Perception 

York University http://www.yorku.ca/research/vision/eye/thejoy.htm  

Table 1.4  Web textbooks and homepages 

 

Some of the main textbooks are now out of print, but pdfs can be found at the CVOnline site. 

There are more than given here, some of which will be referred to in later Chapters; each offers a 

particular view or insight into computer vision and image processing. Some of the main textbooks 

include: Vision [Marr82] which concerns vision and visual perception (as previously mentioned); 

Fundamentals of Computer Vision [Jain89] which is stacked with theory and technique, but omits 

implementation and some image analysis, as does Robot Vision [Horn86]; Machine Vision [Jain95] 

offers concise coverage of 3D and motion; Digital Image Processing [Gonzalez17] has more 

tutorial element than many of the basically theoretical texts and has a fantastic reputation for 

introducing people to the field; Digital Picture Processing [Rosenfeld82] is very dated now, but is 

a well-proven text for much of the basic material; and Digital Image Processing [Pratt01], which 

was originally one of the earliest books on image processing and, like Digital Picture Processing, 

is a well-proven text for much of the basic material, particularly image transforms. Despite its name, 

Active Contours [Blake98] concentrates rather more on models of motion and deformation and 

probabilistic treatment of shape and motion, than on the active contours which we shall find here. 

As such it is a more research text, reviewing many of the advanced techniques to describe shapes 

and their motion. Image Processing - The Fundamentals [Petrou10] (by two Petrous!) surveys the 

subject (as its title implies) from an image processing viewpoint. Computer Vision [Shapiro01] 

includes chapters on image databases and on virtual and augmented reality. Computer Vision: A 

Modern Approach [Forsyth11] offers much new – and needed - insight into this continually 

developing subject (two chapters that didn’t make the final text – on probability and on tracking – 

are available at the book’s website luthuli.cs.uiuc.edu/~daf/book/book.html). One text [Brunelli09] 

focusses on object recognition techniques “employing the idea of projection to match image 

patterns” which is a class of approaches to be found later in this text. A much newer text Computer 

Vision: Algorithms and Applications [Szeliski11] is naturally much more up to date than older texts, 

and has an online (earlier) electronic version available too. An excellent (and popular) text 

Computer Vision Models, Learning, and Inference [Prince12] – electronic version available - is 

based on models and learning. One of the bases of the book is “to organize our knowledge …what 

is most critical is the model itself - the statistical relationship between the world and the 

measurements” and thus covers many of the learning aspects of computer vision which complement 

and extend this book’s focus on feature extraction. Finally, very recently there has been a condensed 

coverage of Image Processing and Analysis [Gimel’farb18]. 

Also, Kasturi, R., and Jain, R. C. Eds.: Computer Vision: Principles [Kasturi91a] and Computer 

Vision: Advances and Applications [Kasturi91b] presents a collection of seminal papers in 

computer vision, many of which are cited in their original form (rather than in this volume) in later 

chapters. There are other interesting edited collections [Chellappa92], one edition [Bowyer96] 

honours Azriel Rosenfeld’s many contributions. 

Section 1.5 describes some of the image processing software packages available, and their 

textbook descriptions. Of the texts with a more practical flavour Image Processing and Computer 

Vision [Parker10] includes description of software rather at the expense of lacking range of 

technique. There is excellent coverage of practicality in Practical Algorithms for Image Analysis 

http://www.yorku.ca/research/vision/eye/thejoy.htm
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[O’Gorman08]. One JAVA text, The Art of Image Processing with Java, [Hunt11] emphasises 

software engineering more than feature extraction (giving basic methods only).  

Other textbooks include: the longstanding The Image Processing Handbook [Russ17] which 

contains much basic technique with excellent visual support, but without any supporting theory; 

Computer Vision: Principles, Algorithms, Applications, Learning [Davies17] which is targeted 

primarily at (industrial) machine vision systems but covers much basic technique, with pseudo-

code to describe their implementation; and the Handbook of Pattern Recognition and Computer 

Vision [Cheng16] covers much technique. There are specialist texts too and they usually concern 

particular Sections of this book, and they will be mentioned there. Last but by no means least, there 

is even a (illustrated) dictionary [Fisher13] to guide you through the terms that are used. 

1.6.3  The Web 

This book's homepage (users.soton.ac.uk/msn/book) details much of the support material, including 

worksheets, code and demonstrations, and any errata we regret have occurred (and been found). 

The Computer Vision Online CVOnline homepage dai.ed.ac.uk/CVonline/ has been brought to us 

by Bob Fisher from the University of Edinburgh. There's a host of material there, including its 

description. If you have access to the web-based indexes of published papers, the Web of Science 

covers a lot and includes INSPEC which has papers more related to engineering, together with 

papers in conferences. Explore is for the IEEE – with paper access for subscribers; many researchers 

turn to Google Scholar as this is freely available with ability to retrieve the papers as well as to see 

where they have been used. Many use Scholar since it also allows you to see the collection (and 

metrics) of papers in authors’ pages. The availability of papers within these systems has been 

changing with the new Open Access systems, which at the time of writing are still in some flux. 

 

1.7  Conclusions 

This Chapter has covered most of the pre-requisites for feature extraction in image processing and 

computer vision. We need to know how we see, in some form, where we can find information and 

how to process data. More importantly we need an image, or some form of spatial data. This is to 

be stored in a computer and processed by our new techniques. As it consists of data points stored 

in a computer, this data is sampled or discrete. Extra material on image formation, camera models 

and image geometry is to be found in Chapter 10, but we shall be considering images as a planar 

array of points hereon. We need to know some of the bounds on the sampling process, on how the 

image is formed. These are the subjects of the next Chapter which also introduces a new way of 

looking at the data, how it is interpreted (and processed) in terms of frequency. 
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2  Images, Sampling and Frequency Domain Processing 

 

2.1  Overview 

n this chapter, we shall look at the basic theory which underlies image formation and processing. 

We shall start by investigating what makes up a picture and look at the consequences of having 

a different number of points in the image. We shall also look at images in a different 

representation, known as the frequency domain. In this, as the name implies, we consider an 

image as a collection of frequency components. We can actually operate on images in the frequency 

domain and we shall also consider different transformation processes.  These allow us different 

insights into images and image processing which will be used in later chapters not only as a means 

to develop techniques, but also to give faster (computer) processing. 

 

Main topic Sub topics Main points 

Images Effects of differing numbers of points 

and of number range for those points. 

Grayscale, colour, resolution, 

dynamic range, storage.  

Fourier 

transform 

theory 

What is meant by the frequency 

domain, how it applies to discrete 

(sampled) images, how it allows us to 

interpret images and the sampling 

resolution (number of points). 

Continuous Fourier transform and 

properties, sampling criterion, discrete 

Fourier transform and properties, 

image transformation, transform duals. 

Inverse Fourier transform. Importance 

of magnitude and phase. 

Consequences 

of transform 

approach 

Basic properties of Fourier 

transforms, other transforms, 

frequency domain operations. 

Translation (shift), rotation and 

scaling. Principle of Superposition 

and linearity. Walsh, Hartley, Discrete 

Cosine and Wavelet transforms. 

Filtering and other operations. 

Table 2.1 Overview of Chapter 2 

2.2  Image Formation 

A computer image is a matrix (a two dimensional array) of pixels. The value of each pixel is 

proportional to the brightness of the corresponding point in the scene; its value is, of course, usually 

derived from the output of an A/D converter. We can define a square image as N N  m-bit pixels 

where N is the number of points and m controls the number of brightness values. Using m bits gives 

a range of 2m values, ranging from 0 to 2m−1. If m is 8 this gives brightness levels ranging between 

0 and 255, which are usually displayed as black and white, respectively, with shades of grey in-

between, as they are for the grayscale image of a scene in Figure 2.1(a). Smaller values of m give 

fewer available levels reducing the available contrast in an image. We are concerned with images 

here, not their formation; imaging geometry (pinhole cameras et al) is to be found in Chapter 10. 

I 
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 (a) original image  

    

(b) bit 0 (LSB) (c) bit 1 (d) bit 2 (e) bit 3 

    

(f) bit 4 (g) bit 5 (h) bit 6 (i) bit 7 (MSB) 

Figure 2.1 Decomposing an Image Into its Bits 

The ideal value of m is actually related to the signal to noise ratio (dynamic range) of the camera. 

This is stated as approximately 45 dB for an analogue camera and since there are 6 dB per bit, then 

8 bits will cover the available range. Choosing 8-bit pixels has further advantages in that it is very 

convenient to store pixel values as bytes, and 8-bit A/D converters are cheaper than those with a 

higher resolution. For these reasons images are nearly always stored as 8-bit bytes, though some 

applications use a different range. These are the 8-bit numbers encountered in Section 1.5.2, stored 

as unsigned 8-bit bytes (uint8). The relative influence of the eight bits is shown in the image of 

the subjects in Figure 2.1. Here, the least significant bit, bit 0 (Figure 2.1(b)), carries the least 

information (it changes most rapidly) and is largely noise. As the order of the bits increases, they 

change less rapidly and carry more information. The most information is carried by the most 

significant bit, bit 7 (Figure 2.1(i)). Clearly, the fact that there are people in the original image can 

be recognised much better from the high order bits, much more reliably than it can from the other 

bits (also notice the odd effects which would appear to come from lighting in the middle order bits). 

The variation in lighting is hardly perceived by human vision. 
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Colour images (also mentioned in Section 1.5.2) follow a similar storage strategy to specify 

pixels' intensities. However, instead of using just one image plane, colour images are represented 

by three intensity components. These components generally correspond to red, green, and blue (the 

RGB model) although there are other colour schemes. For example, the CMYK colour model is 

defined by the components cyan, magenta, yellow, and black. In any colour mode, the pixel's colour 

can be specified in two main ways. First, you can associate an integer value, with each pixel, that 

can be used as an index to a table that stores the intensity of each colour component. The index is 

used to recover the actual colour from the table when the pixel is going to be displayed, or 

processed. In this scheme, the table is known as the image's palette and the display is said to be 

performed by colour mapping. The main reason for using this colour representation is to reduce 

memory requirements. That is, we only store a single image plane (i.e., the indices) and the palette. 

This is less than storing the red, green and blue components separately and so makes the hardware 

cheaper and it can have other advantages, for example when the image is transmitted. The main 

disadvantage is that the quality of the image is reduced since only a reduced collection of colours 

is actually used. An alternative to represent colour is to use several image planes to store the colour 

components of each pixel. This scheme is known as true colour and it represents an image more 

accurately, essentially by considering more colours. The most common format uses eight bits for 

each of the three RGB components. These images are known as 24-bit true colour and they can 

contain 16777216 different colours simultaneously. In spite of requiring significantly more 

memory, the image quality and the continuing reduction in cost of computer memory make this 

format a good alternative, even for storing the image frames from a video sequence. Of course, a 

good compression algorithm is always helpful in these cases, particularly, if images need to be 

transmitted on a network. Here we will consider the processing of grey level images only since they 

contain enough information to perform feature extraction and image analysis; greater depth on 

colour analysis/parameterisation is to be found in Chapter 11. Should the image be originally in 

colour, we will consider processing its luminance only, often computed in a standard way. In any 

case, the amount of memory used is always related to the image size. 

   

(a) 64 64  (b) 128128   (c) 256 256  

Figure 2.2 Effects of Differing Image Resolution 

Choosing an appropriate value for the image size, N, is far more complicated. We want N to be 

sufficiently large to resolve the required level of spatial detail in the image. If N is too small, the 

image will be coarsely quantised: lines will appear to be very ‘blocky’ and some of the detail will 

be lost. Larger values of N give more detail, but need more storage space and the images will take 

longer to process, since there are more pixels. For example, with reference to the image in Figure 

2.1(a), Figure 2.2 shows the effect of taking the image at different resolutions. Figure 2.2(a) is a 

6464   image, that shows only the broad structure. It is impossible to see any detail in the sitting 
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subject's face, or anywhere else. Figure 2.2(b) is a 128128   image, which is starting to show more 

of the detail, but it would be hard to determine the subject's identity. The original image, repeated 

in Figure 2.2(c), is a 256256   image which shows a much greater level of detail, and the subject 

can be recognised from the image. Note that the images in Figure 2.2 have been scaled to be the 

same size. As such, the pixels in Figure 2.2(a) are much larger than in Figure 2.2(c) which 

emphasises its blocky structure. Common choices are for 512 512  or 1024 1024  8-bit images 

which require 256 KB and 1 MB of storage, respectively. If we take a sequence of, say, 20 images 

for motion analysis, we will need more than 5 MB to store twenty 512512   images. Even though 

memory continues to become cheaper, this can still impose high cost. But it is not just cost which 

motivates an investigation of the appropriate image size, the appropriate value for N. The main 

question is: are there theoretical guidelines for choosing it? The short answer is ‘yes’; the long 

answer is to look at digital signal processing theory.  

The choice of sampling frequency is dictated by the sampling criterion. Presenting the sampling 

criterion requires understanding of how we interpret signals in the frequency domain. The way in 

is to look at the Fourier transform. This is a highly theoretical topic, but do not let that put you off 

(it leads to image coding, like the JPEG format, so it is very useful indeed). The Fourier transform 

has found many uses in image processing and understanding; it might appear to be a complex topic 

(that’s actually a horrible pun!) but it is a very rewarding one to study. The particular concern is 

number of points per unit area or the appropriate sampling frequency of (essentially, the value for 

N), or the rate at which pixel values are taken from, a camera’s video signal. 

2.3  The Fourier Transform 

The Fourier transform is a way of mapping a signal into its component frequencies. Frequency 

measures in Hertz (Hz) the rate of repetition with time, measured in seconds (s); time is the 

reciprocal of frequency and vice versa (Hertz = 1/seconds; s = 1/Hz). 

Consider a music centre: the sound comes from a computer, a CD player (or a tape, whatever) 

and is played on the speakers after it has been processed by the amplifier. On the amplifier, you can 

change the bass or the treble (or the loudness which is a combination of bass and treble). Bass 

covers the low frequency components and treble covers the high frequency ones. The Fourier 

transform is a way of mapping the signal, which is a signal varying continuously with time, into its 

frequency components. When we have transformed the signal, we know which frequencies made 

up the original sound. 

So why do we do this? We have not changed the signal, only its representation. We can now 

visualise it in terms of its frequencies, rather than as a voltage which changes with time. However, 

we can now change the frequencies (because we can see them clearly) and this will change the 

sound. If, say, there is hiss on the original signal then since hiss is a high frequency component, it 

will show up as a high frequency component in the Fourier transform. So we can see how to remove 

it by looking at the Fourier transform. If you have ever used a graphic equaliser, you have done this 

before. The graphic equaliser is a way of changing a signal by interpreting its frequency domain 

representation; you can selectively control the frequency content by changing the positions of the 

controls of the graphic equaliser. The equation which defines the Fourier transform, Fp, of a signal 

p, is given by a complex integral:  

 ( )( )( ) ( )
j t

Fp p t p t e dt





−

−
=  =   (2.1) 

where: )(Fp is the Fourier transform, and   denotes the Fourier transform process; 

  is the angular frequency, f= 2  measured in radians/s (where the frequency f is the 

 reciprocal of time t, 1/f t= ); 
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j is the complex variable 1j = −  (electronic engineers prefer j to i since they cannot confuse 

it with the symbol for current; perhaps they don’t want to be mistaken for mathematicians 

who use 1i = −  ) 

( )p t is a continuous signal (varying continuously with time); and 

)sin()cos( tjte tj −=−
 gives the frequency components in ( )p t . 

We can derive the Fourier transform by applying Equation 2.1 to the signal of interest. We can 

see how it works by constraining our analysis to simple signals. (We can then say that complicated 

signals are just made up by adding up lots of simple signals.) If we take a pulse which is of 

amplitude (size) A between when it starts at time / 2t T= − and it ends at 2/Tt = , and is zero 

elsewhere, the pulse is:  

 
if / 2 / 2

( )
0 otherwise

A T t T
p t

−  
=  (2.2) 

To obtain the Fourier transform, we substitute for p(t) in Equation 2.1. p(t) = A only for a 

specified time so we choose the limits on the integral to be the start and end points of our pulse (it 

is zero elsewhere) and set p(t) = A, its value in this time interval. The Fourier transform of this pulse 

is the result of computing: 

  

(a) pulse of amplitude A  = 1 (b) Fourier transform 

Figure 2.3 A Pulse and its Fourier Transform 

 
/2

/2

( )

T

j t

T

Fp Ae dt −

−

=   (2.3) 

When we solve this we obtain an expression for )(Fp : 
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By simplification, using the relation jeeθ jj 2/)()sin(  −−= , then the Fourier transform of the pulse is: 
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This is a version of the sinc function, sinc(x) = sin(x)/x. The original pulse, and its transform are 

illustrated in Figure 2.3. Equation 2.5 (as plotted in Figure 2.3(b)) suggests that a pulse is made up 

of a lot of low frequencies (the main body of the pulse) and a few higher frequencies (which give 

us the edges of the pulse). (The range of frequencies is symmetrical around zero frequency; negative 

p( )t

t

Fp ( )



( )tp  ( )Fp   
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frequency is a necessary mathematical abstraction.) The plot of the Fourier transform is actually 

called the spectrum of the signal, which can be considered akin with the spectrum of light.  

  

(a) contribution for  = 1 (b) contribution for  = 2 
  

(c) contribution for  = 3 (d) contribution for  = 4 

 

(e) reconstruction by integration 

Figure 2.4 Reconstructing a Signal from its Transform 

So what actually is this Fourier transform? It tells us what frequencies make up a time domain 

signal. The magnitude of the transform at a particular frequency is the amount of that frequency in 

the original signal. If we collect together sinusoidal signals in amounts specified by the Fourier 

transform, we should obtain the originally transformed signal. This process is illustrated in Figure 

2.4 for the signal and transform illustrated in Figure 2.3. Note that since the Fourier transform is 

actually a complex number it has real and imaginary parts, and we only plot the real part here. A 

low frequency, that for 1 = , in Figure 2.4(a) contributes a large component of the original signal; 

a higher frequency, that for 2= , contributes less as in Figure 2.4(b). This is because the transform 

coefficient is less for 2 =  than it is for 1= . There is a very small contribution for 3 = , Figure 

2.4(c), though there is more for 4= , Figure 2.4(d). This is because there are frequencies for which 

there is no contribution, where the transform is zero. When these signals are integrated together, 

we achieve a signal that looks similar to our original pulse, Figure 2.4(e). Here we have only 

considered frequencies from 6 = −  to 6= . If the frequency range in integration was larger, 

more high frequencies would be included, leading to a more faithful reconstruction of the original 
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pulse.  

The result of the Fourier transform is actually a complex number: each value 𝐹𝑝(𝑤) is  

represented by a pair of numbers that represent its real and imaginary parts. Rather than use the real 

and imaginary parts, the values are usually represented in terms of magnitude (or size, or modulus) 

and phase (or argument). The transform can be represented as: 

 ( ) ( )( ) ( )( )( ) Re Imj tFp p t e dt Fp j Fp  


−

−

= = +  (2.6) 

where ( )Re  and ( )Im are the real and imaginary parts of the transform, respectively. The 

magnitude of the transform is then: 

 ( ) ( )( ) ( )( )
2 2

Re ImFp Fp Fp  = +  (2.7) 

and the phase is: 

 ( )( )
( )( )
( )( )

1
Im

arg tan
Re

Fp
Fp

Fp






−
 

=  
 
 

 (2.8) 

where the signs of the real and the imaginary components can be used to determine which quadrant 

the phase (argument) is in, since the phase can vary from 0 to 2 radians. The magnitude describes 

the amount of each frequency component, the phase describes timing, when the frequency 

components occur. The magnitude and phase of the transform of a pulse are shown in Figure 2.5 

where the magnitude returns a positive transform, and the phase is either 0 or 2 radians (consistent 

with the sine function).  
  

 (a) magnitude  (b) phase 

Figure 2.5 Magnitude and Phase of Fourier Transform of Pulse 

In order to return to the time-domain signal, from the frequency domain signal, we require the 

inverse Fourier transform. This was the process illustrated in Figure 2.4, the process by which we 

reconstructed the pulse from its transform components. The inverse FT calculates ( )p t  from 

)(Fp  by the inverse transformation 1− : 

 ( )1 1
( ) ( ) ( )

2

j tp t Fp Fp e d  




−

−

=  =   (2.9) 

Together, Equation 2.1 and Equation 2.9 form a relationship known as a transform pair that 

allows us to transform into the frequency domain, and back again. By this process, we can perform 

operations in the frequency domain or in the time domain, since we have a way of changing between 

them. One important process is known as convolution. The convolution of one signal p1(t) with 

another signal p2(t), where the convolution process denoted by   is given by the integral 

Fp( )



arg( )Fp( )



( )Fp   ( ))(arg Fp  
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 1 2 1 2( ) ( ) ( ) ( )p t p t p p t d  


−

 = −  (2.10) 

This is actually the basis of systems theory where the output of a system is the convolution of a 

stimulus, say p1, and a system’s response, p2, By inverting the time axis of the system response, to 

give p2(t−) we obtain a memory function. The convolution process then sums the effect of a 

stimulus multiplied by the memory function: the current output of the system is the cumulative 

response to a stimulus. By taking the Fourier transform of Equation 2.10, the Fourier transform of 

the convolution of two signals is 
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 (2.11) 

Now since  2 2( ) ( )jp t e Fp − − =  (to be considered later in Section 2.6.1), then 
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As such, the frequency domain dual of convolution is multiplication; the convolution integral can 

be performed by inverse Fourier transformation of the product of the transforms of the two signals. 

A frequency domain representation essentially presents signals in a different way but it also 

provides a different way of processing signals. Later we shall use the duality of convolution to 

speed up the computation of vision algorithms considerably.  

Further, correlation is defined to be 

 


−

+= dtpptptp )()()()( 2121
 (2.13) 

where   denotes correlation (  is another symbol which is used sometimes, but there is not much 

consensus on this symbol – if comfort is needed: “in esoteric astrology  represents the creative 

spark of divine consciousness” no less!). Correlation gives a measure of the match between the two 

signals 2 ( )p  and )(1 p . When 
2 1( ) ( )p p =  we are correlating a signal with itself and the process 

is known as autocorrelation. We shall be using correlation later, to find things in images.  

 

Time Domain Signals Frequency Domain Spectra 
 

`

 

cos( )t

t

Fcos( )



http://www.symbols.com/encyclopedia/26/268.html
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 (a) cosine wave (b) Fourier transform of cosine wave 
  

 

(c) Gaussian function (d) spectrum of Gaussian function 
 

 

 

(e) delta function (f) frequency content of delta function 
  

 

(g) sampling function in time domain (h) transform of sampling function 

Figure 2.6 Fourier Transform Pairs 

 

Before proceeding further, we also need to define the delta function, which can be considered to be 

a function occurring at a particular time interval: 

 
1 if
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0 otherwise
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− =  (2.14) 

The relationship between a signal’s time domain representation and its frequency domain 

version is also known as a transform pair: the transform of a pulse (in the time domain) is a sinc 

function in the frequency domain. Since the transform is symmetrical, the Fourier transform of a 

sinc function is a pulse. 

There are other Fourier transform pairs, as illustrated in Figure 2.6. Firstly, Figures 2.6(a) and 

(b) show that the Fourier transform of a cosine function is two points in the frequency domain (at 

g( )t
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the same value for positive and negative frequency) − we expect this since there is only one 

frequency in the cosine function, the frequency shown by its transform. Figures 2.6(c) and (d) show 

that the transform of the Gaussian function is another Gaussian function, this illustrates linearity 

(for linear systems it’s Gaussian in, Gaussian out which is another version of GIGO). Figure 2.6(e) 

is a single point (the delta function) which has a transform that is an infinite set of frequencies, 

Figure 2.6(f), an alternative interpretation is that a delta function contains an equal amount of all 

frequencies. This can be explained by using Equation 2.5 where if the pulse is of shorter duration 

(T tends to zero), the sinc function is wider; as the pulse becomes infinitely thin, the spectrum 

becomes infinitely flat.  

Finally, Figures 2.6(g) and (h) show that the transform of a set of uniformly-spaced delta 

functions is another set of uniformly-spaced delta functions, but with a different spacing. The 

spacing in the frequency domain is the reciprocal of the spacing in the time domain. By way of a 

(non-mathematical) explanation, let us consider that the Gaussian function in Figure 2.6(c) is 

actually made up by summing a set of closely spaced (and very thin) Gaussian functions. Then, 

since the spectrum for a delta function is infinite, as the Gaussian function is stretched in the time 

domain (eventually to be a set of pulses of uniform height) we obtain a set of pulses in the frequency 

domain, but spaced by the reciprocal of the time domain spacing. This transform pair is actually 

the basis of sampling theory (which we aim to use to find a criterion which guides us to an 

appropriate choice for the image size). 

2.4  The Sampling Criterion 

The sampling criterion specifies the condition for the correct choice of sampling frequency. 

Sampling concerns taking instantaneous values of a continuous signal, physically these are the 

outputs of an A/D converter sampling a camera signal. Clearly, the samples are the values of the 

signal at sampling instants. This is illustrated in Figure 2.7 where Figure 2.7(a) concerns taking 

samples at a high frequency (the spacing between samples is low), compared with the amount of 

change seen in the signal of which the samples are taken. Here, the samples are taken sufficiently 

fast to notice the slight dip in the sampled signal. Figure 2.7(b) concerns taking samples at a low 

frequency, compared with the rate of change of (the maximum frequency in) the sampled signal. 

Here, the slight dip in the sampled signal is not seen in the samples taken from it. 

 

 

 

 

 

(a) sampling at high frequency (b) sampling at low frequency 

Figure 2.7 Sampling at Different Frequencies 
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We can understand the process better in the frequency domain. Let us consider a time-variant 

signal which has a range of frequencies between −fmax and fmax as illustrated in Figure 2.9(b). This 

range of frequencies is shown by the Fourier transform where the signal’s spectrum exists only 

between these frequencies. This function is sampled every t  s: this is a sampling function of 

spikes occurring every t  s. The Fourier transform of the sampling function is a series of spikes 

separated by 1/sample tf =   Hz. The Fourier pair of this transform was illustrated earlier, Figures 

2.6(g) and (h). 

The sampled signal is the result of multiplying the time-variant signal by the sequence of spikes, 

this gives samples that occur every t  s, and the sampled signal is shown in Figure 2.9(a). These 

are the outputs of the A/D converter at sampling instants. The frequency domain analogue of this 

sampling process is to convolve the spectrum of the time-variant signal with the spectrum of the 

sampling function. Convolving the signals, the convolution process, implies that we take the 

spectrum of one, flip it along the horizontal axis and then slide it across the other. Taking the 

spectrum of the time-variant signal and sliding it over the spectrum of the spikes, results in a 

spectrum where the spectrum of the original signal is repeated every t/1  Hz, fsample in Figure 

2.9(b-d). If the spacing between samples is t , the repetitions of the time-variant signal’s spectrum 

are spaced at intervals of t/1 , as in Figure 2.9(b). If the sample spacing is large, then the time-

variant signal’s spectrum is replicated close together and the spectra collide, or interfere, as in 

Figure 2.9(d). The spectra just touch when the sampling frequency is twice the maximum frequency 

in the signal. If the frequency domain spacing, fsample, is more than twice the maximum frequency, 

fmax, the spectra do not collide or interfere, as in Figure 2.9(c). If the sampling frequency exceeds 

twice the maximum frequency then the spectra cannot collide. This is the Nyquist sampling 

criterion: 

 

In order to reconstruct a signal from its samples, the sampling frequency 
must be at least twice the highest frequency of the sampled signal. 

If we do not obey Nyquist’s sampling theorem the spectra collide. When we inspect the sampled 

signal, whose spectrum is within −fmax to fmax, wherein the spectra collided, the corrupt spectrum 

implies that by virtue of sampling, we have ruined some of the information. If we were to attempt 

to reconstruct a signal by inverse Fourier transformation of the sampled signal’s spectrum, 

processing Figure 2.9(d) would lead to the wrong signal whereas inverse Fourier transformation of 

the frequencies between -fmax and fmax in Figures 2.9(b) and (c) would lead back to the original 

signal. This can be seen in computer images as illustrated in Figure 2.8 which show an image of a 

group of people (the computer vision research team at Southampton) displayed at different spatial 

resolutions (the contrast has been increased to the same level in each sub-image, so that the effect 

we want to demonstrate should definitely show up in the print copy). Essentially, the people become 

less distinct in the lower resolution image, Figure 2.8(b). Now, look closely at the window blinds 

behind the people. At higher resolution, in Figure 2.8(a), these appear as normal window blinds. In 

Figure 2.8(b), which is sampled at a much lower resolution, a new pattern appears: the pattern 

appears to be curved - and if you consider the blinds’ relative size the shapes actually appear to be 

much larger than normal window blinds. So by reducing the resolution, we are seeing something 

different, an alias of the true information – something that is not actually there at all, but appears 

to be there by result of sampling. This is the result of sampling at too low a frequency: if we sample 

at high frequency, the interpolated result matches the original signal; if we sample at too low a 

frequency we can get the wrong signal. (For these reasons people on television tend to wear non-
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chequered clothes – or should not!). Note that this effect can be seen, in the way described, in the 

printed version of this book. This is because the printing technology is very high resolution. If you 

were to print this page offline (and sometimes even to view it), e.g. from a Google Books sample, 

the nature of the effect of aliasing depends on the resolution of the printed image, and so the aliasing 

effect might also be seen in the high resolution image as well as in the low resolution version – 

which rather spoils the point. 

  

(a) high resolution (b) low resolution (aliased) 

Figure 2.8 Aliasing in Sampled Imagery 

 

In art, Dali’s picture “Gala Contemplating the Mediterranean Sea, which at 20 meters becomes the 

portrait of Abraham Lincoln” (Homage to Rothko) is a classic illustration of sampling. At high 

resolution you see a detailed surrealist image, with Mrs Dali as a central figure. Viewed from a 

distance - or for the shortsighted, without your spectacles on - the image becomes a (low resolution) 

picture of Abraham Lincoln. For a more modern view of sampling [Unser00] is well worth a look. 

The compressive sensing approach [Donoho06] takes advantage of the fact that many signals have 

components that are significant, or nearly zero, leading to cameras which acquire significant ly 

fewer elements to represent an image. This provides an alternative basis for compressed image 

acquisition without loss of resolution. 

 

 

(a) sampled signal 
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(b) oversampled spectra 

 

(c) sampling at the Nyquist rate 

 

(d) undersampled, aliased, spectra 

Figure 2.9 Sampled Spectra 

 

Obtaining the wrong signal is called aliasing: our interpolated signal is an alias of its proper form. 

Clearly, we want to avoid aliasing, so according to the sampling theorem we must sample at twice 

the maximum frequency of the signal coming out of the camera. The maximum frequency is defined 

to be 5.5 MHz so we must sample the camera signal at 11 MHz. (For information, when using a 

computer to analyse speech we must sample the speech at a minimum frequency of 12 kHz since 

the maximum speech frequency is 6 kHz.) Given the timing of a video signal, sampling at 11 MHz 

implies a minimum image resolution of 576 576  pixels. This is unfortunate: 576 is not an integer 

power of two which has poor implications for storage and processing. Accordingly, since some 

image processing systems have a maximum resolution of 512512  , they must anticipate aliasing. 

This is mitigated somewhat by the observations that: 

1. globally, the lower frequencies carry more information whereas locally the higher 

frequencies contain more information so the corruption of high frequency information is 

of less importance; and 

2. there is limited depth of focus in imaging systems (reducing high frequency content). 
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But aliasing can, and does, occur and we must remember this when interpreting images. A different 

form of this argument applies to the images derived from digital cameras. The basic argument that 

the precision of the estimates of the high order frequency components is dictated by the relationship 

between the effective sampling frequency (the number of image points) and the imaged structure, 

naturally still applies.  

 

 

 
  

(a) oversampled rotating wheel (b) slow rotation 

 

 
  

(c) undersampled rotating wheel (d) fast rotation 

Figure 2.10 Correct and Incorrect Apparent Wheel Motion 

The effects of sampling can often be seen in films, especially in the rotating wheels of cars, as 

illustrated in Figure 2.10. This shows a wheel with a single spoke, for simplicity. The film is a 

sequence of frames starting on the left. The sequence of frames plotted Figure 2.10(a) is for a wheel 

which rotates by 20o between frames, as illustrated in Figure 2.10(b). If the wheel is rotating much 

faster, by 340o between frames, as in Figure 2.10(c) and Figure 2.10(d), to a human viewer the 

wheel will appear to rotate in the opposite direction. If the wheel rotates by 360o between frames, 

it will appear to be stationary. In order to perceive the wheel as rotating forwards, then the rotation 

between frames must be 180o at most. This is consistent with sampling at more than twice the 

maximum frequency. Our eye can resolve this in films (when watching a film, we bet you haven’t 

thrown a wobbly because the car’s going forwards whereas the wheels say it’s going the other way) 

since we know that the direction of the car must be consistent with the motion of its wheels, and 

we expect to see the wheels appear to go the wrong way, sometimes. 

2.5  The Discrete Fourier Transform (DFT) 

2.5.1  One Dimensional Transform 

Given that image processing concerns sampled data, we require a version of the Fourier transform 

which handles this. This is known as the discrete Fourier transform (DFT). The DFT of a set of N 

points px (sampled at a frequency which at least equals the Nyquist sampling rate) into sampled 

frequencies Fpu is: 

 
21

0

1 N j xu
N

u x

x

e
N

 − −  
 

=

= Fp p  (2.15) 

where the scaling coefficient 1 N  ensures the d.c. coefficient 0Fp  is the average of all samples. 

Equation 2.15 is a discrete analogue of the continuous Fourier transform: the continuous signal is 
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replaced by a set of samples, the continuous frequencies by sampled ones, and the integral is 

replaced by a summation. If the DFT is applied to samples of a pulse in a window from sample 0 

to sample / 2 1N −  (when the pulse ceases), the equation becomes: 

 

1 2
2

0

1
N

j xu
N

u

x

Ae
N

−  
−  

 

=

= Fp  (2.16) 

And since the sum of a geometric progression can be evaluated according to: 
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the discrete Fourier transform of a sampled pulse is given by: 
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By rearrangement, we obtain: 
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The modulus of the transform is: 
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since the magnitude of the exponential function is 1. The original pulse is plotted Figure 2.11(a) 

and the magnitude of the Fourier transform plotted against frequency is given in Figure 2.11(b) 

   

(a) sampled pulse (b) DFT of sampled pulse 

Figure 2.11 Transform Pair for Sampled Pulse 

 

This is clearly comparable with the result of the continuous Fourier transform of a pulse, Figure 

2.3, since the transform involves a similar, sinusoidal, signal. The spectrum is equivalent to a set of 

sampled frequencies; we can build up the sampled pulse by adding up the frequencies according to 

the Fourier description. Consider a signal such as that shown in Figure 2.12(a). This has no explicit 

analytic definition, as such it does not have a closed Fourier transform; the Fourier transform is 

generated by direct application of Equation 2.15. The result is a set of samples of frequency, Figure 

2.12(b).  
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(a) sampled signal (b) transform of sampled signal 

Figure 2.12 A Sampled Signal and its Discrete Transform 

The Fourier transform in Figure 2.12(b) can be used to reconstruct the original signal in Figure 

2.12(a), as illustrated in Figure 2.13. Essentially, the coefficients of the Fourier transform tell us 

how much there is of each of a set of sinewaves (at different frequencies), in the original signal. 

The lowest frequency component Fp0, for zero frequency, is called the d.c. component (it is constant 

and equivalent to a sinewave with no frequency) and it represents the average value of the samples. 

Adding the contribution of the first coefficient Fp0, Figure 2.13(b), to the contribution of the second 

coefficient Fp1, Figure 2.13(c), is shown in Figure 2.13(d). This shows how addition of the first 

two frequency components approaches the original sampled signal. The approximation improves 

when the contribution due to the fourth component, Fp3, is included, as shown in Figure 2.13(e). 

Finally, adding up all six frequency components gives a close approximation to the original signal, 

as shown in Figure 2.13(f). 

This process is, of course, the inverse DFT. This can be used to reconstruct a sampled signal 

from its frequency components by: 

 
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Note that there are several assumptions made prior to application of the DFT. The first is that the 

sampling criterion has been satisfied. The second is that the sampled function replicates to infinity. 

When generating the transform of a pulse, Fourier theory assumes that the pulse repeats outside the 

window of interest. (There are window operators that are designed specifically to handle difficulty 

at the ends of the sampling window.) Finally, the maximum frequency corresponds to half the 

sampling period. This is consistent with the assumption that the sampling criterion has not been 

violated, otherwise the high frequency spectral estimates will be corrupted. 

   

(a) original sampled signal (b) first coefficient Fp0 
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(c) second coefficient Fp1 (d) adding Fp1 and Fp0 
  

(e) adding Fp0, Fp1 , Fp2 and Fp3 (f) adding all six frequency components 

Figure 2.13 Signal Reconstruction from its Transform Components 

. 

2.5.2  Two Dimensional Transform 

Equation 2.15 gives the DFT of a one-dimensional signal. We need to generate Fourier transforms 

of images so we need a two-dimensional discrete Fourier transform. This is a transform of pixels 

(sampled picture points) with a two dimensional spatial location indexed by coordinates x and y. 

This implies that we have two dimensions of frequency, u and v, which are the horizontal and 

vertical spatial frequencies, respectively. Given an image of a set of vertical lines, the Fourier 

transform will show only horizontal spatial frequency. The vertical spatial frequencies are zero 

since there is no vertical variation along the y axis. The two dimensional Fourier transform evaluates 

the frequency data, FPu,v, from the N N pixels Px,y as: 

 
( )

21 1

, ,2
0 0

1 N N j ux vy
N

u v x y

x y

e
N

 − − − + 
 

= =

= FP P  (2.22) 

Where the scaling coefficient 
21 N makes the d.c. coefficient 0,0FP  equal the average of all points 

in the image (in Matlab the scaling coefficient is 1.0). The Fourier transform of an image can 

actually be obtained optically by transmitting a laser through a photographic slide and forming an 

image using a lens. The Fourier transform of the image of the slide is formed in the front focal plane 

of the lens. This is still restricted to transmissive systems whereas reflective formation would widen 

its application potential considerably (since optical computation is just slightly faster than its digital 

counterpart). The magnitude of the 2D DFT of an image of vertical bars (Figure 2.14(a)) is shown 

in Figure 2.14(b). This shows that there are only horizontal spatial frequencies; the image is constant 

in the vertical axis and there are no vertical spatial frequencies. 
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(a) image of vertical bars (b) Fourier transform of bars 

Figure 2.14 Applying the 2D Discrete Fourier Transform   

 

The two-dimensional (2D) inverse DFT transforms from the frequency domain back to the image 

domain, to reconstruct the image. The 2D inverse DFT is given by: 
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The contribution of different frequencies is illustrated in Figure 2.15 where we have images showing 

in the first row (a)-(d) the position of the image transform components (presented as 

log[magnitude]), in the second row (f)-(i) the image constructed from that single component, and in 

the third row (j)-(m) the reconstruction (by the inverse FT)  using frequencies up to and including 

that component. There is also the image of the magnitude of the Fourier transform, (e). We shall 

take the transform components from a circle centred at the middle of the transform image. In Figure 

2.15 the first column is the transform components at radius 1 (which are low frequency 

components), the second column is the radius 4 components, the third column is at radius 9 and the 

fourth column is the radius 25 components (the higher frequency components). The last column has 

the complete Fourier transform image, (e), and the reconstruction of the image from the transform, 

(n). As we include more components we include more detail; the lower order components carry the 

bulk of the shape, not the detail. In the bottom row, the first components plus the d.c. component 

give a very coarse approximation Figure 2.15(j) when the components up to radius four are added 

we can see the shape of a face Figure 2.15(k); the components up to radius 9 order allow us to see 

the face features Figure 2.15(l), but they are not sharp; we can infer identity from the components 

up to radius 25 Figure 2.15(m), noting that there are still some image artefacts on the right hand side 

of the image; when all components are added Figure 2.15(n) we return to the original image. This 

also illustrates coding, as the image can be encoded by retaining fewer of the components of the 

image than are in the complete transform. Figure 2.15 (m) is a good example of where an image of 

acceptable quality can be reconstructed, even when about half of the components are discarded. 

There are considerably better coding approaches than this, though we shall not consider coding in 

this text, and compression ratios can be considerably higher and still achieve acceptable quality. 

Note that it is common to use logarithms of magnitude to display Fourier transforms (Section 3.3.1) 

as otherwise the magnitude of the d.c. component can make the transform difficult to see.   
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(a) transform 

radius 1 

components 

(b) transform 

radius 4 

components 

(c) transform 

radius 9 

components 

(d) transform 

radius 25 

components 

(e) complete 

transform 

    

 

(f) image by 

radius 1 

components 

(g) image by 

radius 4 

components 

(h) image by 

radius 9 

components 

(i) image by radius 

25 components 

     

(j) reconstruction 

up to 1st 

(k) reconstruction 

up to 4th 

(l) reconstruction 

up to 9th 

(m) reconstruction 

up to 25th 

(n) reconstruction 

with all 

Figure 2.15 Image Reconstruction and Different Frequency Components  

 

One of the important properties of the FT is replication which implies that the transform repeats in 

frequency up to infinity, as indicated in Figure 2.9 for 1D signals. To show this for 2D signals, we 

need to investigate the Fourier transform, originally given by FPu,v, at integer multiples of the 

number of sampled points FPu+mM,v+nN (where m and n are integers). The Fourier transform FPu+mM,v+nN 

is, by substitution in Equation 2.22: 
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so, 
( )

21 1
2 ( )

, ,2
0 0

1 N N j ux vy
j mx nyN

u mN v nN x y

x y

e e
N





 − − − + 
− + 

+ +

= =

= FP P  (2.25) 

and since 1)(2 =+− nymxje   (since the term in brackets is always an integer and then the exponent is 

always an integer multiple of 2) then 

 , ,u mN v nN u v+ + =FP FP  (2.26) 

which shows that the replication property does hold for the Fourier transform. However, Equation 

2.22 and Equation 2.23 are very slow for large image sizes. They are usually implemented by using 

the Fast Fourier Transform (FFT) which is a splendid rearrangement of the Fourier transform’s 
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computation which improves speed dramatically. The FFT algorithm is beyond the scope of this 

text but is also a rewarding topic of study (particularly for computer scientists or software 

engineers). The FFT can only be applied to square images whose size is an integer power of 2 

(without special arrangement). Calculation actually involves the separability property of the Fourier 

transform. Separability means that the Fourier transform is calculated in two stages: the rows are 

first transformed using a 1D FFT, then this data is transformed in columns, again using a 1D FFT. 

This process can be achieved since the sinusoidal basis functions are orthogonal. Analytically, this 

implies that the 2D DFT can be decomposed as in Equation 2.27 
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where M and N are the numbers of columns and rows, respectively. Equation 2.27 shows how 

separability is achieved, since the inner term expresses transformation along one axis (the y axis), 

and the outer term transforms this along the other (the x axis). 

 

function [Fourier] = F_transform(image) 

  

image=double(image); 
[rows, cols] = size(image); 
%we deploy equation 2.27, so that we can handle non square images 
for u=1:cols % along the horizontal axis  
    for v=1:rows % down the vertical axis 
        sumx=0; 
        for x=1:cols 
            %first we transform the rows 
            sumy=0; 
            for y=1:rows %Eq 2.27 inner bracket 
                sumy=sumy+image(y,x)*exp(-1j*2*pi*(v-1)*(y-1)/rows); 
            end 
            %then we do the columns Eq 2.27 outer  
            sumx=sumx+sumy*exp(-1j*2*pi*(u-1)*(x-1)/cols); 
        end %and finally normalise 
        Fourier(v,u) = sumx/(rows*cols); 
    end 
end 

 

Code 2.1 2D DFT, Exponential Form implementing Equation 2.27 

Code 2.1 illustrates the implementation of Equation 2.27 in Matlab. The implementation simply 

evaluates the complex exponent in the definition. Since the computational cost of a 1D FFT of N 

points is O(Nlog2(N)), the cost (by separability) for the 2D FFT is O(N2log2(N)) whereas the 

computational cost of the 2D DFT is O(N3). This implies a considerable saving since it suggests 

that the FFT requires much less time, particularly for large image sizes (so for a 1024 1024  image, 

if the FFT takes seconds, the DFT will take minutes). The 2D FFT is available in Matlab using the 

fft2 function which gives a result equivalent to Equations 2.22 or 2.27. You can note the 

difference in time between executing the code in Code 2.1 (or our Python version) and Matlab’s 

own FFT operator (note there is some difference due to compiled vs interpreted code; do not run 

the basic version on a large image as it will take a very long time). The inverse 2D FFT, Equation 

2.23, can be implemented using the Matlab ifft2 function. (The difference between many Fourier 

transform implementations essentially concerns the chosen scaling factor, though the order of the 

frequency components differs from the basic equations in the Matlab functions.) The direct Matlab 

implementation of the 2D DFT in Equation 2.27 is given in Code 2.1. This is simply called using 
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the command b=F_Transform(a)and the routine enforces the change from an integer format 

to double precision, as needed when using complex numbers in Matlab. It is easier to work in double 

precision throughout when developing code; integer formats can be used to speed real 

implementations (with caution: an early ARIANE space rocket blew up given erroneous conversion 

of a 32-bit integer to a 16-bit version).  

In general, Equation 2.27 is difficult to compute since it requires evaluation of complex 

exponents. The result of a complex exponent is a complex number, thus the implementation requires 

representing functions, operations and variables for storage and processing using complex numbers. 

Although operations with complex numbers are well supported in mathematical packages, this 

equation obscures the true interpretation of the Fourier definition. Fortunately, by algebraic 

manipulation we can rewrite Equation 2.27 in a form that separates the imaginary and real parts. 

By recalling Euler’s formula 𝑒−𝑗𝑤𝑡 = 𝑐𝑜𝑠(𝑤𝑡) − 𝑗𝑠𝑖𝑛(𝑤𝑡), then Equation 2.27 becomes 

𝑭𝑷𝑢,𝑣 =
1

𝑀𝑁
∑ ∑ 𝑷𝒙,𝒚 (𝑐𝑜𝑠 (

2𝜋

𝑀
𝑣𝑦) − 𝑗𝑠𝑖𝑛 (

2𝜋

𝑀
𝑣𝑦)) (𝑐𝑜𝑠 (

2𝜋

𝑁
𝑢𝑥) − 𝑗𝑠𝑖𝑛 (

2𝜋

𝑁
𝑢𝑥))𝑴−𝟏

𝒚=𝟎
𝑁−1
𝑥=0     (2.28) 

By grouping terms, we have that 

𝐅𝐏𝑢,𝑣 =
1

𝑀𝑁
∑ ∑ 𝐏𝑥,𝑦 ((cos (

2𝜋

𝑁
𝑢𝑥) cos (

2𝜋

𝑀
𝑣𝑦) − sin (

2𝜋

𝑁
𝑢𝑥) sin (

2𝜋

𝑀
𝑣𝑦)) −𝑀−1

𝑦=0
𝑁−1
𝑥=0

                                               𝑗 (cos (
2𝜋

𝑁
𝑢𝑥) sin (

2𝜋

𝑀
𝑣𝑦) + sin (

2𝜋

𝑁
𝑢𝑥) cos (

2𝜋

𝑀
𝑣𝑦)))              (2.29)  

Equations 2.27 and 2.28 represent the same transform, but Equation  2.28 permits computation of 

the real and imaginary parts as trigonometric functions. More importantly, the trigonometric form 

shows how the values of  𝑢 and 𝑣 define the frequency used in the transform. This equation also 

shows the symmetry of the transform; since sin(−𝑡) =  − sin(𝑡) and cos(−𝑡) =  cos(𝑡), then the 

magnitude of the transform defined in Equation 2.7 is symmetrical at the origin.  

for u in range(-maxFreqW, maxFreqW + 1): 

    entryW = u + maxFreqW  

     

    for v in range(-maxFreqH, maxFreqH + 1): 

        entryH = v + maxFreqH 

        coeff[entryH, entryW] = [0, 0] 

         

        for x in range(0, width): 

            sumY = [0, 0]  

             

            for y in range(0, height): 

                sumY[0] += inputImage[y,x] * cos(y * wh * v) 

                sumY[1] += inputImage[y,x] * sin(y * wh * v) 

            coeff[entryH, entryW][0] += sumY[0]*cos(x*ww*u)-sumY[1]*sin(x*ww*u) 

            coeff[entryH, entryW][1] -= cos(x*ww*u)*sumY[1]+sin(x * ww*u)* sumY[0] 

Code 2.2 2D DFT, Trigonometric Form 

The implementation of the trigonometric form is shown in Code 2.2. To illustrate separability, the 

implementation computes the inner and outer summations in Equation 2.28, though the same result 

would be obtained if the real and imaginary parts were computed by using Equation 2.29. In any 

case, the implementation should perform the sum for the real and imaginary parts by evaluating 

sines and cosines at different frequencies. In the code, the array sumY[0] and coeff[u,v][0] 

store the real values and sumY[1] and coeff[u,v][1] the imaginary values. Finally the 

coefficients need to be scaled by 
1

𝑀𝑁
 according to Equation 2.28. 
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(a) image of square (b) magnitude (c) phase 

   

(d) image (e) magnitude (f) phase 

Figure 2.16  2D DFT Examples 

Figure 2.16 shows two examples of the DFT obtained with Code 2.2. The results of the Fourier 

expansion are not presented by showing the imaginary and real values of  𝐅𝐏𝑢,𝑣, but the complex 

values are shown as magnitude and phase (Equations 2.7 and 2.8). Note the symmetries in the 

magnitude and phase that result from the symmetries of the cosine and sine functions.  

Equation 2.29 reveals the nature of the Fourier transform as a description of an image using 

frequency; each value  𝐅𝐏𝑢,𝑣 defines sine and cosine waves at a given frequency. The values of 𝑢 

and 𝑣 produce waves with frequency that increases as these values increase. As such, the position 

of each component reflects its frequency: low frequency components are near the origin and high 

frequency components are further away. Notice also that frequencies can be positive and negative 

and the lowest frequency component, for zero frequency – the d.c. component – represents the 

average value of the samples. In Code 2.2, we used this interpretation where 𝑢 and 𝑣 represent 

frequencies. As such, the loops in the implementation iterate over a frequency range. These ranges 

can be arbitrarily selected to obtain only the fine detail by just computing high frequencies or to 

obtain coarse features by choosing low frequencies. As we discussed in Section 2.4, the maximum 

frequency we can use is given by the half of image size (or the result will contain aliasing). In the 

implementation, the result of the summation for each pair 𝑢, 𝑣 is stored in a cell in the output array 

coeff. The index to the cell is stored in the variables entryW and entryH. These values are set 

such that the zero frequency is stored in the centre of the output array and the negative frequencies 

are to the left of and down from the centre position. This way to select the output cells is just a 

standard way to organise and visualise the frequencies. It is important to notice that the loops can 

be changed to iterate over the output array (since Equations 2.29 and 2.27 are the same transform), 

but iterating in frequency gives a clear meaning to the frequency content in the output. 

Code 2.1  shows the origin of the transform (low frequency components) at the corners of the 

transform. The image of the square in 2.17(a) produces the result for 2.17(b). A spatial transform 

is easier to visualize if the d.c. (zero frequency) component is in the centre, with frequency 

increasing towards the edge of the image. This can be arranged either by rotating each of the four 
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quadrants in the Fourier transform by 180o. An alternative is to reorder the original image to give 

a transform which has been shifted to the centre. Both operations result in the image in 2.17(c) 

wherein the transform is much more easily seen. Note that this is aimed to improve visualization 

and does not change any of the frequency domain information, only the standard way it is displayed. 

 

 

 
 

 
 

 

(a) image of square (b) original DFT (c) rearranged DFT 

Figure 2.17 Rearranging the 2D DFT for Display Purposes. 

 

To rearrange the image so that the d.c. component is in the centre, the frequency components need 

to be reordered. This can be achieved simply by multiplying each image point Px,y by −1(x+y). Since 

cos( ) 1,− = −  then 1 je −− =  (the minus sign is introduced just to keep the analysis neat) so we 

obtain the transform of the multiplied image as: 
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 (2.30) 

According to Equation 2.30, when pixel values are multiplied by −1
(x+y),

 the Fourier transform 

becomes shifted along each axis by half the number of samples. According to the replication 

theorem, Equation 2.26, the transform replicates along the frequency axes. This implies that the 

centre of a transform image will now be the d.c. component. (Another way of interpreting this is 

that rather than look at the frequencies centred on where the image is, our viewpoint has been shifted 

so as to be centred on one of its corners - thus invoking the replication property.) This brings 

equivalence between the trigonometric form (for the magnitude see Figures 2.16(b) and (d)) and 

the exponential form (see Figure 2.17(b)).  The operator Rearrange, in Code 2.3, is used prior to 

transform calculation and leads to the image of Figure 2.17(c), and all later transform images. 

 

function rearranged = rearrange(image) 

%get dimensions 

[rows,cols]=size(image);  

 

%rearrange image 

for x = 1:cols %address all columns 

  for y = 1:rows %address all rows 

    rearranged(y,x)=image(y,x)*((-1)^(y+x)); %Eq. 2.30 
  end 
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end 

Code 2.3 Reordering for Transform Calculation 

The full effect of the Fourier transform is shown by application to an image of much higher 

resolution. Figure 2.18(a) shows the image of a group of people and Figure 2.18(b) shows its 

transform. The transform reveals that much of the information is carried in the lower frequencies 

since this is where most of the spectral components concentrate. This is because the image has 

many regions where the brightness does not change a lot, such as in the foliage. The high frequency 

components reflect change in intensity. Accordingly, the higher frequency components arise from 

things that change fast and from the borders of objects. 

  

(a) image of group (b) transform of image of group 

Figure 2.18 Applying the Fourier Transform to the Image of a Group of People 

As with the 1D Fourier transform, there are 2D Fourier transform pairs, illustrated in Figure 

2.19. The 2D Fourier transform of a two dimensional pulse, Figure 2.19(a), is a two dimensional 

sinc function, in Figure 2.19(b). The 2D Fourier transform of a Gaussian function, in Figure 2.19(c), 

is again a two dimensional Gaussian function in the frequency domain, in Figure 2.19(d). 

 

 

Image Domain Transform Domain 

  

(a) square (b) 2D sinc function 
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(c) Gaussian (d) Fourier transform of Gaussian 

Figure 2.19 2D Fourier Transform Pairs 

2.6  Properties of the Fourier Transform 

2.6.1  Shift Invariance 

The decomposition into spatial frequency does not depend on the position of features within the 

image. If we shift all the features by a fixed amount, or acquire the image from a different position, 

the magnitude of its Fourier transform does not change. This property is known as shift invariance. 

By denoting the delayed version of p(t) as ( )p t − , where   is the delay, and the Fourier transform 

of the shifted version as  ( )p t  − , we obtain the relationship between a time domain shift in the 

time and frequency domains as: 

  ( ) ( )jp t e P − − =  (2.31) 

Accordingly, the magnitude of the Fourier transform is: 

  ( ) ( ) ( ) ( )j jp t e P e P P    − − − = = =  (2.32) 

and since the magnitude of the exponential function is 1.0 then the magnitude of the Fourier 

transform of the shifted image equals that of the original (unshifted) version. We shall use this 

property later in Chapter 7 when we use Fourier theory to describe shapes. There, it will allow us 

to give the same description to different instances of the same shape, but a different description to 

a different shape. You do not get something for nothing: even though the magnitude of the Fourier 

transform remains constant, its phase does not. The phase of the shifted transform is: 

  ( ) ( )arg ( ) arg ( )jp t e P − − =  (2.33) 

The implementation of a shift operator, Code 2.4, uses the modulus operation % to enforce the 

cyclic shift. The shiftDistance is a parameter that defines the length of the horizontal shift 

along the x axis.  
 

for x,y in itertools.product(range(0, width), range(0, height)): 

    xShift = (x - shiftDistance) % width  

    shiftImage[y,x] = inputImage[y,xShift] 

Code 2.4 Shifting an Image 
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 (a) original image 
(b) magnitude of Fourier 

transform of original image 

(c) phase of Fourier transform 

of original image 

   

(d) shifted image 
(e) magnitude of Fourier 

transform of shifted image 

(f) phase of Fourier transform 

of shifted image 

Figure 2.20 Illustrating Shift Invariance 

This process is illustrated in Figure 2.20. An original image, Figure 2.20(a), is shifted along the 

x and the y axes, Figure 2.20(d). The shift is cyclical, so parts of the image wrap around; those parts 

at the top of the original image appear at the base of the shifted image. The Fourier transform of 

the original image and of the shifted image are identical: Figure 2.20(b) appears the same as Figure 

2.20(e). The phase differs: the phase of the original image Figure 2.20(c) is clearly different from 

the phase of the shifted image, Figure 2.20(f). 

The differing phase implies that, in application, the magnitude of the Fourier transform of a face, 

say, will be the same irrespective of the position of the face in the image (i.e. the camera or the 

subject can move up and down), assuming that the face is much larger than its image version. This 

implies that if the magnitude of the Fourier transform is used to analyse an image of a human face 

or one of cloth, to describe it by its spatial frequency, we do not need to control the position of the 

camera, or the object, precisely. 

 

    

 (a) original image (b) rotated image  (c) transform of 

original image 

(d) transform of 

rotated image 

Figure 2.21 Illustrating Rotation 
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2.6.2  Rotation 

The Fourier transform of an image rotates when the source image rotates. This is to be expected 

since the decomposition into spatial frequency reflects the orientation of features within the image. 

As such, orientation dependency is built into the Fourier transform process. 

This implies that if the frequency domain properties are to be used in image analysis, via the 

Fourier transform, the orientation of the original image needs to be known, or fixed. It is often 

possible to fix orientation, or to estimate its value when a feature’s orientation cannot be fixed. 

Alternatively, there are techniques to impose invariance to rotation, say by translation to a polar 

representation, though this can prove to be complex. 

The effect of rotation is illustrated in Figure 2.21. An image, Figure 2.21(a), is rotated by 90o to 

give the image in Figure 2.21(b). Comparison of the transform of the original image, Figure 2.21(c), 

with the transform of the rotated image, Figure 2.21(d) shows that the transform has been rotated 

by 90o, by the same amount as the image. In fact, close inspection of Figures 2.21(c) and (d) shows 

that the diagonal axis is consistent with the normal to the axis of the leaves (where the change 

mainly occurs), and this is the axis that rotates. 

2.6.3  Frequency Scaling 

By definition, time is the reciprocal of frequency. So if an image is compressed, equivalent to 

reducing time, its frequency components will spread, corresponding to increasing frequency. 

Mathematically the relationship is that the Fourier transform of a function of time multiplied by a 

scalar  , ( )p t , gives a frequency domain function )/( P , so: 

  
1

( )p t P



 

 
 =  

 
 (2.34) 

This is illustrated in Figure 2.22 where the image of spots (a 3D calibration target), Figure 2.22(a), 

is reduced in scale, Figure 2.22(b), thereby increasing the spatial frequency. The DFT of the original 

image is shown in Figure 2.22(c) which reveals that the large spatial frequencies in the original 

image are arranged in a star-like pattern. As a consequence of scaling the original image, the 

spectrum will spread from the origin consistent with an increase in spatial frequency, as shown in 

Figure 2.22(d). This retains the star-like pattern, but with points at a greater distance from the origin.  

The implications of this property are that if we reduce the scale of an image, say by imaging at 

a greater distance, we will alter the frequency components. The relationship is linear: the amount 

of reduction, say the proximity of the camera to the target, is directly proportional to the scaling in 

the frequency domain. 

 

    

 (a) texture image (b) scaled texture 

image 

(c) transform of 

original texture 

(d) transform of scaled 

texture 

Figure 2.22 Illustrating Frequency Scaling 
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2.6.4  Superposition (Linearity) 

The principle of superposition is very important in systems analysis. Essentially, it states that a 

system is linear if its response to two combined signals equals the sum of the responses to the 

individual signals. Given an output O which is a function of two inputs 1I  and 2I , the response to 

signal 1I  is 1( )O I , that to signal 2I  is 2( )O I , and the response to 1I   and 2I , when applied together, 

is 1 2( )O I I+ , the superposition principle states: 

 1 2 1 2( ) ( ) ( )O I I O I O I+ = +  (2.35) 

Any system which satisfies the principle of superposition is termed linear. The Fourier transform 

is a linear operation since, for two signals 1p  and 2p : 

      1 2 1 2p p p p + =  +   (2.36) 

In application this suggests that we can separate images by looking at their frequency domain 

components. This is illustrated for one-dimensional signals in Figure 2.23. One signal is shown in 

Figure 2.23(a) and a second is shown in Figure 2. 23(c). The Fourier transforms of these signals are 

shown in Figures 2.23(b) and (d). The addition of these signals is shown in Figure 2.23(e) and its 

transform in Figure 2.23(f). The Fourier transform of the added signals differs little from the 

addition of their transforms, Figure 2.23(g). This is confirmed by subtraction of the two, Figure 

2.23(h) (some slight differences can be seen, but these are due to numerical error). 
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(a) signal 1 (b)  (signal 1) (c) signal 2 (d)  (signal 2) 
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(e) signal 1 + signal 2 (f)  (signal 1 +    

signal 2) 

(g)  (signal 1) +        

 (signal 2) 

(h) difference: (f)-(g) 

Figure 2.23 Illustrating Superposition 

 

By way of example, given the image of a fingerprint in blood on cloth it is very difficult to separate 

the fingerprint from the cloth by analysing the combined image. However, by translation to the 

frequency domain, the Fourier transform of the combined image shows strong components due to 
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the texture (this is the spatial frequency of the cloth’s pattern) and weaker, more scattered, 

components due to the fingerprint. If we suppress the frequency components due to the cloth’s 

texture, and invoke the inverse Fourier transform, then the cloth will be removed from the original 

image. The fingerprint can now be seen in the resulting image. 

 

2.6.5  The Importance of Phase 

You might reasonably ask: “what is the importance of phase?”. It is actually a pretty reasonable 

question. Phase is about how signals are arranged (or add up), whereas magnitude is about how big 

the signals are. As such, one might intuitively think that the magnitude is more important than the 

phase. It is more complex than this: phase can actually be viewed to be more important (though you 

need both magnitude and phase to reconstruct a signal). To illustrate this we shall take two images, 

one of the eye and the other of an ear (OK, ears are rather ugly but they are unique to their owner) 

as shown in Figure 2.24. Here we have reconstructed images by taking the magnitude of one image 

and the phase (the argument) of another. From Eq 2.6 we have  

 ( ) ( )( ) ( )( ) ( ) ( )Re Im cos sinj magnitude phase j magnitude phase  = + =  +  Fp Fp Fp  (2.37) 

where magnitude and phase are calculated according to Equations 2.7 and 2.8, respectively. The 

rearranged Fourier transform is then 

( ) ( ) ( )( )( ) ( ) ( )( )( )image 1  cos image 2     image 1  sin image 2arg j arg  +  =Fp Fp Fp Fp Fp  

When image 1 is the eye and image 2 is the ear then the reconstructed image (via the inverse FT) 

looks most like the image of the ear, Figure 2.24(c); when it is the other way found, the image is 

much closer to the eye, Figure 2.24(d). So it is the phase that is controlling the reconstruction in 

this case, not the magnitude (the bit represented by the magnitude hardly shows in the 

reconstructions here). Clearly the phase is very important in the representation of a signal. 

 

    

 (a) eye image (b) ear image (c) reconstruction 

from magnitude(eye) 

and phase(ear) 

(d) reconstruction from 

magnitude(ear) and 

phase(eye) 

Figure 2.24 Illustrating the Importance of Phase 

 

2.7  Transforms other than Fourier 

2.7.1  Discrete Cosine Transform 

The Discrete Cosine Transform (DCT) [Ahmed74] is a real transform that has great advantages in 

energy compaction. Its definition for spectral components vu ,DP  is: 
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



P

DP

P

 (2.38) 

There are many variants of the definition of the DCT and we are concerned only with principles 

here. The inverse DCT is defined by 

 
1 1

, ,2
0 0

1 (2 1) (2 1)
cos cos

2 2

N N

x y u v

u v

x u y v

N N N

 − −

= =

+ +   
=     

   
P DP  (2.39) 

   

(a) Fourier transform magnitude (b) discrete cosine transform (c) Hartley transform 

Figure 2.25 Comparing Transforms  

 

A fast version of the DCT is available, like the FFT, and calculation can be based on the FFT. 

Both implementations offer about the same speed. The Fourier transform is not actually optimal for 

image coding since the Discrete Cosine transform can give a higher compression rate, for the same 

image quality. This is because the cosine basis functions can afford for high energy compaction. 

This can be seen by comparison of Figure 2.25(b) with Figure 2.25(a), which reveals that the DCT 

components are much more concentrated around the origin, than those for the Fourier Transform. 

This is the compaction property associated with the DCT. The DCT has actually been considered 

as optimal for image coding, and this is why it is found in the JPEG and MPEG standards for coded 

image transmission. 

The DCT is actually shift variant, due to its cosine basis functions. In other respects, its 

properties are very similar to the DFT, with one important exception: it has not yet proved possible 

to implement convolution with the DCT. It is actually possible to calculate the DCT via the FFT. 

This has been performed in Figure 2.25(b). 

The Fourier transform essentially decomposes, or decimates, a signal into sine and cosine 

components, so the natural partner to the DCT is the Discrete Sine Transform (DST). However, the 

DST transform has odd basis functions (sine) rather than the even ones in the DCT. This lends the 

DST transform some less desirable properties, and it finds much less application than the DCT. 

2.7.2  Discrete Hartley Transform 

The Hartley transform [Hartley42] is a form of the Fourier transform, but without complex 

arithmetic, with result for the face image shown in Figure 2.25(c). Oddly, though it sounds like a 

very rational development, the Hartley transform was first invented in 1942, but not rediscovered 

and then formulated in discrete form until 1983 [Bracewell83]. One advantage of the Hartley 

transform is that the forward and inverse transform is the same operation; a disadvantage is that 

phase is built into the order of frequency components since it is not readily available as the argument 
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of a complex number. The definition of the Discrete Hartley Transform (DHT) replaces the 

exponent basis by the cas function defined as 

 cas(𝑡) = cos(𝑡) + sin(𝑡) (2.40) 

Thus the transform components 
vu ,HP  are: 

𝐇𝐏𝑢,𝑣 =
1

√𝑀𝑁
∑ ∑ 𝐏𝑥,𝑦 (cos (

2𝜋

𝑀
𝑣𝑦) + sin (

2𝜋

𝑀
𝑣𝑦))𝑀−1

𝑦=0 (cos (
2𝜋

𝑁
𝑢𝑥) + sin (

2𝜋

𝑁
𝑢𝑥))𝑁−1

𝑥=0     (2.41) 

For a square image, this can be written as 

 𝐇𝐏𝑢,𝑣 =
1

𝑁
∑ ∑ 𝐏𝑥,𝑦 (sin (

2𝜋

𝑁
(𝑢𝑥 + 𝑣𝑦)) + cos (

2𝜋

𝑁
(𝑢𝑥 − 𝑣𝑦)))𝑁−1

𝑦=0
𝑁−1
𝑥=0      (2.42) 

The inverse Hartley transform is the same process, but applied to the transformed image. 

 𝐏𝑥,𝑦 =
1

𝑁
∑ ∑ 𝐇𝐏𝑥,𝑦 (sin (

2𝜋

𝑁
(𝑢𝑥 + 𝑣𝑦)) + cos (

2𝜋

𝑁
(𝑢𝑥 − 𝑣𝑦)))𝑁−1

𝑦=0
𝑁−1
𝑥=0      (2.43) 

The implementation is then the same for both the forward and the inverse transforms. Again, a fast 

implementation is available - the Fast Hartley Transform [Bracewell84] (though some suggest 

that it should be called the Bracewell transform, eponymously). It is actually possible to calculate 

the DFT of a function, F(u), from its Hartley transform, H(u). The analysis here is based on 1-

dimensional data, but only for simplicity since the argument extends readily to two dimensions. 

By splitting the Hartley transform into its odd and even parts, O(u) and E(u), respectively we 

obtain: 

 ( ) ( ) ( )H u O u E u= +  (2.44) 

where: 

 
( ) ( )

( )
2

H u H N u
E u

+ −
=  (2.45) 

and 

 
( ) ( )

( )
2

H u H N u
O u

− −
=  (2.46) 

The DFT can then be calculated from the DHT simply by 

 )()()( uOjuEuF −=  (2.47) 

Conversely, the Hartley transform can be calculated from the Fourier transform by: 

 )](Im[)](Re[)( uFuFuH −=  (2.48) 

where Re[ ] and Im[ ] denote the real and the imaginary parts, respectively. This emphasises the 

natural relationship between the Fourier and the Hartley transform. The image of Figure 2.25(c) 

has been calculated via the 2D FFT using Equation 2.48. Note that the transform in Figure 2.25(c) 

is the complete transform whereas the Fourier transform in Figure 2.25(a) shows magnitude only. 

Naturally, as with the DCT, the properties of the Hartley transform mirror those of the Fourier 

transform. Unfortunately, the Hartley transform does not have shift invariance but there are ways 

to handle this. Also, convolution requires manipulation of the odd and even parts. 

Code 2.5 illustrates the computation of the Hartley transform in Equation 2.28. Similar to Code 

2.2 the values are defined for a range of frequencies and the result is processed such that the zero 

frequency is at the centre of the output array. Notice that this equation is also separable, so it is 

possible to follow a similar implementation of the Fourier transform by maintaining the first cosine 
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and sine sum in one direction and then performing the multiplication with the terms in the other 

direction. In this implementation, the components are computed by combining the product of both 

directions. 

 
for u in range(-maxFreqW, maxFreqW + 1): 

    entryW = u + maxFreqW 

    for v in range(-maxFreqH, maxFreqH + 1): 

        entryH = v + maxFreqH  

        for x,y in itertools.product(range(0, width), range(0, height)): 

            coeff[entryH, entryW] += inputImage[y,x] *                           \ 

                       (cos(x*ww*u) + sin(x*ww*u)) * (cos(y*wh*v) + sin(y*wh*v)) 

Code 2.5  Hartley Transform 

 

Figure 2.26 shows an example of the transform obtained using Code 2.5. Figure 2.26 (a) shows the 

input image and Figure 2.26 (b) shows the result of the transform.  The resulting components have 

positive and negative values, so to show the results in an image it is necessary to perform some 

normalisation. The image shown in Figure 2.26 (b) shows the log of the absolute value, so it is 

comparable to the Fourier magnitude. Notice that the transform is symmetrical and it is rather 

similar to the results in Figure 2.16(e). This is because both, the Fourier and Hartley transforms 

decompose the image into frequency components. 

 

  

(a) image  (b) transform modulus  

Figure 2.26 Applying the Hartley Transform 

 

 

2.7.3  Introductory Wavelets 

2.7.3.1   Gabor Wavelet 

Wavelets are more recent approach to signal processing than the Fourier transform, being 

introduced only in the nineties [Daubechies90]. Their main advantage is that they allow multi-

resolution analysis (analysis at different scales, or resolution). Furthermore, wavelets allow 

decimation in space and frequency, simultaneously. Earlier transforms actually allow decimation 

in frequency, in the forward transform, and in time (or position) in the inverse. In this way, the 

Fourier transform gives a measure of the frequency content of the whole image: the contribution of 

the image to a particular frequency component. Simultaneous decimation allows us to describe an 

image in terms of frequency which occurs at a position, as opposed to an ability to measure 

frequency content across the whole image. Clearly this gives us a greater descriptional power, 

which can be used to good effect. 
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First though, we need a basis function, so that we can decompose a signal. The basis functions 

in the Fourier transform are sinusoidal waveforms at different frequencies. The function of the 

Fourier transform is to convolve these sinusoids with a signal to determine how much of each is 

present. The Gabor wavelet is well suited to introductory purposes, since it is essentially a sinewave 

modulated by a Gaussian envelope. The Gabor wavelet gw is given by 

 

2

0

0

0( , , )

t t

j t
gw t e e

  

− 
− −  =  (2.49) 

where 0 02 f =  is the modulating frequency, t0 dictates position and  controls the width of the 

Gaussian envelope which embraces the oscillating signal. An example Gabor wavelet is shown in 

Figure 2.27 which shows the real and the imaginary parts (the modulus is the Gaussian envelope). 

Increasing the value of 0  increases the frequency content within the envelope whereas increasing 

the value of   spreads the envelope without affecting the frequency. So why does this allow 

simultaneous analysis of time and frequency? Given that this function is the one convolved with 

the test data, then we can compare it with the Fourier transform. In fact, if we remove the term on 

the right hand side of Equation 2.49, we return to the sinusoidal basis function of the Fourier 

transform, the exponential in Equation 2.1. Accordingly, we can return to the Fourier transform by 

setting   to be very large. Alternatively, setting f0 to zero removes frequency information. Since 

we operate in between these extremes, we obtain position and frequency information 

simultaneously.  

  

(a) real part (b) imaginary part 

Figure 2.27 An Example Gabor Wavelet 

Actually, an infinite class of wavelets exists which can be used as an expansion basis in signal 

decimation. One approach [Daugman88] has generalised the Gabor function to a 2D form aimed to 

be optimal in terms of spatial and spectral resolution. These 2D Gabor wavelets are given by 

 

( ) ( )

( ) ( )( )

2 2

0 0

2

0 0 0
2 cos( ) sin( )

0

1
2D( , , , )

x x y y

j x x y y
gw x y e e

   
 

 

 − + −
 −
  − − + − =  (2.50) 

where 0
x and 0

y control position, 0 02 f =  controls the frequency of modulation along either 

axis, and  controls the direction (orientation) of the wavelet (as implicit in a two dimensional 

system). Naturally, the shape of the area imposed by the 2D Gaussian function could be elliptical 

if different variances were allowed along the x and y axes (the frequency can also be modulated 
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differently along each axis). Figure 2.28, of an example 2D Gabor wavelet, shows that the real and 

imaginary parts are even and odd functions, respectively; again, different values for f0 and  control 

the frequency and envelope’s spread respectively, the extra parameter  controls rotation. 

 

  

(a) real part (b) imaginary part 

Figure 2.28 Example 2-Dimensional Gabor Wavelet 

The function of the wavelet transform is to determine where and how each wavelet specified by the 

range of values for each of the free parameters occurs in the image. Clearly, there is a wide choice 

that depends on application. An example transform is given in Figure 2.29. Here, the Gabor wavelet 

parameters have been chosen in such a way as to select face features: the eyes, nose and mouth 

have come out very well. (Not that it’s anything to do with Gabor, but the lady in the image had an 

interesting career: she started as lady of the night, went on to be a pop star and then wrote a book 

about it. In her career she had a lot of positions, especially at the start.) These features are where 

there is local frequency content with orientation according to the head’s inclination. Naturally, these 

are not the only features with these properties, the cuff of the sleeve is highlighted too! But this 

does show the Gabor wavelet’s ability to select and analyse localised variation in image intensity. 

  

(a) original image (b) after Gabor wavelet transform 

Figure 2.29 An Example Gabor Wavelet Transform 

However, the conditions under which a set of continuous Gabor wavelets will provide a complete 

representation of any image (i.e. that any image can be reconstructed) were developed later. 

However, the theory is naturally very powerful, since it accommodates frequency and position 

simultaneously, and further it facilitates multi-resolution analysis - the analysis is then sensitive to 

scale which is advantageous since objects which are far from the camera appear smaller than those 

which are close. We shall find wavelets again, when processing images to find low-level features. 

Amongst applications of Gabor wavelets, we can find measurement of iris texture to give a very 
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powerful security system [Daugman93] and face feature extraction for automatic face recognition 

[Lades93]. Wavelets continue to develop [Daubechies90] and have found applications in image 

texture analysis [Laine93], in coding [daSilva96] and in image restoration [Banham96]. 

Unfortunately, the discrete wavelet transform is not shift invariant, though there are approaches 

aimed to remedy this (see for example [Donoho95]). As such, we shall not study it further and just 

note that there is an important class of transforms that combine spatial and spectral sensitivity, and 

it is likely that this importance will continue to grow. 

2.7.3.2   Haar Wavelet 

Though Fourier laid the basis for frequency decomposition, the original wavelet approach is now 

attributed to Alfred Haar’s work in 1909. This uses a binary approach, rather than a continuous 

signal, and has led to fast methods for finding features in images [Oren97] (especially the object 

detection part of the Viola-Jones face detection approach [Viola01]). Essentially, the binary 

functions can be considered to form averages over sets of points, thereby giving means for 

compression and for feature detection. If we are to form a new vector (at level h+1) by taking 

averages of pairs of elements (and retaining the integer representation) of the N points in the 

previous vector (at level h of the ( )2log N  levels) as,  

 ( )Nh
N

i
h

i

h

ih

i 2

1221 log,...1;1
2

...0
2

−
+

= ++ pp
p  

(2.51)
 

By way of example, consider a vector of points at level 0 as 

  0 1 3 21 19 17 19 1 1= −p  
(2.52)

 

then the first element in the new vector becomes ( ) 22/31 =+  and the next element is 

( )21 19 / 2 20+ = and so on, so the next level is 

  0182021 =p  
(2.53)

 

And is naturally half the number of points. If we also generate some detail, which is how we return 

to the original points, then we have a vector 

  1 1 1 1 1= − −d  (2.54) 

and when each element of the detail d1 is successively added and subtracted from the elements of 

p1 as  1

3

1

3

1

3

1

3

1

2

1

2

1

2

1

2

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0 dpdpdpdpdpdpdpdp −+−+−+−+  by which we 

obtain 

( ) ( ) ( ) ( )2 1 2 1 20 1 20 1 18 1 18 1 0 1 0 1+ − − − + − + − − − + −    

which returns us to the original vector 
0

p  (Eqn. 2.52). If we continue to similarly form a series of 

decompositions (averages of adjacent points), together with the detail at each point, we generate 

    2 211 9 ; 9 9= = −p d  
(2.55)

 

    3 310 ; 1= =p d  
(2.56)

 

We can then store the image as a code 

    1111991101233 −−−=dddp  
(2.57) 
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The process is illustrated in Fig. 2.30 for a sinewave. Fig. 2.30(a) shows the original sinewave, (b) 

shows the decomposition to level 3, and it is a close but discrete representation whereas (c) shows 

the decomposition to level 6, which is very coarse. The original signal can be reconstructed from 

the final code, and this is without error. If the signal is reconstructed by filtering the detail to reduce 

the amount of stored data, the reconstruction of the original signal (d) at level 0 is quite close to 

the original signal, and the reconstruction at the other levels is similarly close as expected.  The 

reconstruction error is also shown in (d) to (f). Components of the detail (of magnitude less than 

one) were removed, achieving a compression ratio of approximately 50%. Naturally, a Fourier 

transform would encode the signal better, as the Fourier transform is best suited to representing a 

sinewave. Like Fourier this discrete approach can encode the signal, we can also reconstruct the 

original signal (reverse the process), and shows how the signal can be represented at different 

scales, since there are less points in the higher levels. 

 

 

Binary decomposition Reconstruction after filtering/ 

compression 
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(c) level 6, p6 (f) level 6, p6 

Figure 2.30 Binary Signal  Decomposition and Reconstruction 

 

By Eqn. 2.57 this gives a set of numbers of the same size as the original data, and is an alternative 

representation from which we can reconstruct the original data. There are two important 

differences:  

 i) we have an idea of scale by virtue of the successive averaging ( 1
p  is similar in structure 

to 0
p , but at a different scale) ; 

and  ii) we can compress (or code) the image by removing the small numbers in the new 

representation (by setting them to zero, noting that there are efficient ways of 

encoding structures containing large numbers of zeros). 

A process of successive averaging and differencing can be expressed as a function of the form in 

Fig. 2.31. This is a mother wavelet which can be applied at different scales, but retains the same 

shape at those scales. So we now have a binary decomposition rather than the sinewaves of the 

Fourier transform. 
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Figure 2.31 Example Haar Wavelet Function 

 

To detect objects, these wavelets need to be arranged in two dimensions. These can be arranged to 

provide for object detection, by selecting the two-dimensional arrangement of points. By defining 

a relationship which is a summation of the points in an image prior to a given point  
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= sP P  

(2.58)

 

Then we can achieve wavelet type features which are derived by using these summations. Four of 

these wavelets are shown in Fig. 2.32. These are placed at selected positions in the image to which 

they are applied. There are white and black areas: the sum of the pixels under the white area(s) is 
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subtracted from of the sum of the pixels under the dark area(s), in a way similar to the earlier 

averaging operation in Eqn. 2.52. The first template, Fig. 2.32(a), will detect shapes which are 

brighter on one side than the other; the second (b) will detect shapes which are brighter in a vertical 

sense; the third will detect a dark object which has brighter areas on either side. There is a family 

of these arrangements, and that can apply at selected levels of scale. By collecting the analysis, we 

can determine objects whatever their position, size (objects further away will appear smaller) or 

rotation. We will dwell on these topics later and how we find and classify shapes. The point here is 

that we can achieve some form of binary decomposition in two dimensions, as opposed to the sine/ 

cosine decomposition of the Gabor wavelet whilst retaining selectivity to scale and position (similar 

to the Gabor wavelet). This is also simpler, so the binary functions can be processed more quickly. 

 

                        

                       

                  

                       

                      

                        

(a) horizontal (b) vertical (c) bar (d) diagonal 

Figure 2.32 Example Haar Wavelet Image Functions 

2.7.4  Other Transforms 

Decomposing a signal into sinusoidal components was actually one of the first approaches to 

transform calculus, and this is why the Fourier transform is so important. The sinusoidal functions 

are actually called basis functions, the implicit assumption is that the basis functions map well to 

the signal components. As such, the Haar wavelets are binary basis functions. There is 

(theoretically) an infinite range of basis functions. Discrete signals can map better into collections 

of binary components rather than sinusoidal ones. These collections (or sequences) of binary data 

are called sequency components and form the basis of the Walsh transform [Walsh23], which is a 

global transform when compared with the Haar functions (like Fourier compared with Gabor). This 

has found wide application in the interpretation of digital signals, though it is less widely used in 

image processing (one disadvantage is the lack of shift invariance). The Karhunen-Loéve transform 

[Karhunen47] [Loéve48] (also called the Hotelling transform from which it was derived, or more 

popularly Principal Component Analysis) is a way of analysing (statistical) data to reduce it to those 

data which are informative, discarding those which are not. 

2.8  Applications using Frequency Domain Properties  

Filtering is a major use of Fourier transforms, particularly because we can understand an image, 

and how to process it, much better in the frequency domain. An analogy is the use of a graphic 

equaliser to control the way music sounds. In images, if we want to remove high-frequency 

information (like the hiss on sound) then we can filter, or remove, it by inspecting the Fourier 

transform. If we retain low-frequency components, we implement a low-pass filter. The low-pass 

filter describes the area in which we retain spectral components, the size of the area dictates the 

range of frequencies retained, and is known as the filter’s bandwidth. If we retain components 

within a circular region centred on the d.c. component, and inverse Fourier transform the filtered 

transform then the resulting image will be blurred. Higher spatial frequencies exist at the sharp 
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edges of features, so removing them causes blurring. But the amount of fluctuation is reduced too; 

any high frequency noise will be removed in the filtered image. 

The Matlab implementation of a low-pass filter which retains frequency components within a 

circle of specified radius is the function low_filter, given in Code 2.6(a). This operator 

assumes that the radius and centre co-ordinates of the circle are specified prior to its use. Points 

within the circle remain unaltered, whereas those outside the circle are set to zero, black. The Python 

version is given in Code 2.6(b). The function uses Fourier coefficients in the array coeff. This 

array is computed in Code 2.2.  The value cutFrequency is used to select frequencies and 

should be set to between the maximum and minimum frequency value in the image. The code 

iterates over all frequencies and it computes the distance to the zero frequency. If the distance is 

lower than cutFrequency then the frequency is copied to the array coeffLow, otherwise it 

is copied to the coeffHigh array. That is, the code fills two arrays that contains the low and high 

frequencies in the image.   

 

function output = low_filter(image,value) 

%get dimensions 

[rows,cols]=size(image);  

  

%filter the transform 

for x = 1:cols %address all columns 

  for y = 1:rows %address all rows 

    if (((y-(rows/2))^2)+((x-(cols/2))^2)-(value^2))>0  

        output(y,x)=0; %discard components outside the circle 

    else 

        output(y,x)=image(y,x); %and keep the ones inside 

    end 

  end 

end 

(a) Matlab 

for kw,kh in itertools.product(range(-maxFreqW, maxFreqW + 1),        \ 

                               range(-maxFreqH, maxFreqH + 1)):    

    IndexW, indexH = kw + maxFreqW, kh + maxFreqH 

     

    if sqrt(kw * kw + kh * kh) < cutFrequency: 

        coeffLow[indexH, IndexW][0] = coeff[indexH, IndexW][0] 

        coeffLow[indexH, IndexW][1] = coeff[indexH, IndexW][1] 

    else: 

        coeffHigh[indexH, IndexW][0] = coeff[indexH, IndexW][0] 

        coeffHigh[indexH, IndexW][1] = coeff[indexH, IndexW][1] 

(b) Python 

Code 2.6 Implementing Low-Pass Filtering 

 

When applied to an image we obtain a low-pass filtered version. In application to an image of a 

face, the low spatial frequencies are the ones which change slowly as reflected in the resulting, 

blurred image, Figure 2.33(a). The high frequency components have been removed as shown in the 

transform, Figure 2.33(b). The radius of the circle controls how much of the original image is 

retained. In this case, the radius is 10 pixels (and the image resolution is 256256  ). If a larger circle 

were to be used, more of the high frequency detail would be retained (and the image would look 

more like its original version); if the circle was very small, an even more blurred image would 

result, since only the lowest spatial frequencies would be retained. This differs from the earlier 

Gabor wavelet approach that allows for localised spatial frequency analysis. Here, the analysis is 

global: we are filtering the frequency across the whole image. 
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Alternatively, we can retain high frequency components and remove low frequency ones. This 

is a high-pass filter. If we remove components near the d.c. component and retain all the others, the 

result of applying the inverse Fourier transform to the filtered image will be to emphasise the 

features that were removed in low-pass filtering. This can lead to a popular application of the high-

pass filter: to ‘crispen’ an image by emphasising its high frequency components. An 

implementation using a circular region merely requires selection of the set of points outside the 

circle, rather than inside as for the low-pass operator. The effect of high-pass filtering can be 

observed in Figure 2.33(c) which shows removal of the low frequency components: this emphasises 

the hair and the borders of a face’s features since these are where brightness varies rapidly. The 

retained components are those which were removed in low-pass filtering, as illustrated in the 

transform, Figure 2.33(d). 

 

    

 (a) low-pass filtered 

image 

 (b) low-pass filtered 

transform 

 (c) high-pass filtered 

image 

 (d) high-pass 

filtered transform 

Figure 2.33 Illustrating Low- and High-Pass Filtering 

 

It is also possible to retain a specified range of frequencies. This is known as band-pass filtering. 

It can be implemented by retaining frequency components within an annulus centred on the d.c. 

component. The width of the annulus represents the bandwidth of the band-pass filter. 

This leads to digital signal processing theory. There are many considerations to be made in the 

way you select, and the manner in which frequency components are retained or excluded. This is 

beyond a text on Computer Vision. For further study in this area, Rabiner and Gold [Rabiner75], 

or Oppenheim and Schafer [Oppenheim09], although published (in their original form) a long time 

ago now, remain as popular introductions to Digital Signal Processing theory and applications.  

It is actually possible to recognise the object within the low-pass filtered image. Intuitively, this 

implies that we could just store the frequency components selected from the transform data, rather 

than all the image points. In this manner a fraction of the information would be stored, and still 

provide a recognizable image, albeit slightly blurred. This concerns image coding which is a 

popular target for image processing techniques, for further information see [Clarke85] or a newer 

text, like [Woods11] or [Sayood17]. Note that the JPEG coding approach uses frequency domain 

decomposition, and is arguably the most ubiquitous image coding technique used today. 

2.9  Further Reading  

We shall meet the frequency domain throughout this book, since it allows for an alternative 

interpretation of operation, in the frequency domain as opposed to the time domain. This will occur 

in low- and high-level feature extraction, and in shape description. Further, it actually allow for 

some of the operations we shall cover. Further, because of the availability of the FFT, it is also used 

to speed up algorithms. 
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Given these advantages, it is well worth looking more deeply. Mark’s copy of Fourier’s original 

book has a review “Fourier’s treatise is one of the very few scientific books which can never be 

rendered antiquated by the progress of science” – penned by James Clerk Maxwell no less.  For 

introductory study, there is Who is Fourier [Lex12] which offers a lighthearted and completely 

digestible overview of the Fourier transform, it’s simply excellent for a starter view of the topic. 

For further study (and entertaining study too!) of the Fourier transform, try The Fourier Transform 

and its Applications by R. N. Bracewell [Bracewell86], or a newer text [Nussbaumer12]. A number 

of the standard image processing texts include much coverage of transform calculus, such as Jain 

[Jain89], Gonzalez and Wintz [Gonzalez17], and Pratt [Pratt13]. There is a relatively new text 

concentrating on image processing using Python [Chityala15]. For more coverage of the DCT try 

Jain [Jain89]; for an excellent coverage of the Walsh transform try Beauchamp’s superb text 

[Beauchamp75]. On compressed sensing, [Eldar12] is worth a read. For wavelets, try the book by 

Wornell that introduces wavelets from a signal processing standpoint [Wornell96], there’s Mallat’s 

classic text [Mallat08] or a new text that includes images [Broughton18]. For general signal 

processing theory there are introductory texts (see for example Meade and Dillon [Meade86], or 

Ifeachor’s excellent book [Ifeachor02]), for more complete coverage try Rabiner and Gold 

[Rabiner75] or Oppenheim and Schafer [Oppenheim09] (as mentioned earlier). Finally, on the 

implementation side of the FFT (and for many other signal processing algorithms) Numerical 

Recipes in C [Press07] is an excellent book. It is extremely readable, full of practical detail − well 

worth a look. Numerical Recipes is on the web too, together with other signal processing sites, as 

listed in Table 1.4. 
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3  Image Processing  

3.1  Overview 

e shall now start to process digital images. First, we shall describe the brightness 

variation in an image using its histogram. We shall then look at operations which 

manipulate the image so as to change the histogram, and at processes that shift and scale 

the result (making the image brighter or dimmer, in different ways). We shall also 

consider thresholding techniques that turn an image from grey level into binary. These are called 

single point operations. After, we shall move to group operations where the group is those points 

found inside a template. Some of the most common operations on the groups of points are statistical, 

providing images where each point is the result of, say, averaging the neighbourhood of each point 

in the original image. We shall see how the statistical operations can reduce noise in the image, 

which is of benefit to the feature extraction techniques to be considered later. As such, these basic 

operations are usually for pre-processing for later feature extraction or to improve display quality. 

Finally, morphological operators process an image according to shape, starting with binary and 

moving to grey level operations. 

 

Main topic Sub topics Main points 

Image 

Description 

Portray variation in image brightness 

content as a graph/histogram. 

Histograms, image contrast.  

Point 

Operations 

Calculate new image points as a function 

of the point at the same place in the 

original image. The functions can be 

mathematical, or can be computed from 

the image itself and will change the 

image’s histogram. Finally, thresholding 

turns an image from grey level to a 

binary (black and white) representation. 

Histogram manipulation; intensity 

mapping: addition, inversion, 

scaling, logarithm, exponent. 

Intensity normalisation; histogram 

equalisation. Thresholding and 

optimal thresholding. 

Group 

Operations 

Calculate new image points as a function 

of the neighbourhood of the point at the 

same place in the original image. The 

functions can be statistical including: 

mean (average); median and mode. 

Advanced filtering techniques, including 

feature preservation.  

Template convolution (inc. frequency 

domain implementation). Statistical 

operators: direct averaging, median 

filter, and mode filter. Non-local 

means, anisotropic diffusion, and 

bilateral filter for image smoothing. 

Other operators: force field and 

image ray transforms.  

Image 

morphology 

and 

operators 

Morphological operators that process an 

image according to shape, starting with 

binary and moving to grey level 

operations. 

Mathematical morphology: hit or 

miss transform, erosion, dilation 

(inc. grey level operators) and 

Minkowski operators. 

Table 3.1 Overview of Chapter 3 

 

W 
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3.2  Histograms 

The intensity histogram shows how individual brightness levels are occupied in an image; the image 

contrast is measured by the range of brightness levels. The histogram plots the number of pixels 

with a particular brightness level against the brightness level. For 8-bit pixels, the brightness ranges 

from zero (black) to 255 (white). Figure 3.1 shows an image and its histogram. The histogram, 

Figure 3.1(b), shows that not all the grey levels are used and the lowest and highest intensity levels 

are far apart, reflecting good contrast. Note that the image contains many light grey pixels that 

produce the wide lower peak in the histogram. If the image was darker, overall, the histogram would 

be concentrated towards black. If the image was brighter, but with lower contrast, then the 

histogram would be thinner and concentrated near the whiter brightness levels.  

 
 

(a) image  (b) histogram  

Figure 3.1 An Image and its Histogram 

This histogram shows us that we have not used all available grey levels. Accordingly, we can stretch 

the image to use them all, and the image would become clearer. This is essentially cosmetic 

attention to make the image’s appearance better. Making the appearance better, especially in view 

of later processing, is the focus of many basic image processing operations, as will be covered in 

this Chapter. The histogram can also reveal if there is much noise in the image, if the ideal histogram 

is known. We might want to remove this noise, not only to improve the appearance of the image, 

but to ease the task of (and to present the target better for) later feature extraction techniques. This 

Chapter concerns these basic operations which can improve the appearance and quality of images.  

 

3.3  Point Operators 

3.3.1  Basic Point Operations  

The most basic operations in image processing are point operations where each pixel value is 

replaced with a new value obtained from the old one. If we want to increase the brightness to stretch 

the contrast we can simply multiply all pixel values by a scalar, say by 2 to double the range. 

Conversely, to reduce the contrast (though this is not usual) we can divide all point values by a 
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scalar. If the overall brightness is controlled by a level, l, (e.g. the brightness of global light) and 

the range is controlled by a gain, k, the brightness of the points in a new picture, N, can be related 

to the brightness in old picture, O, by: 

 , , , 1,x y x yk l x y N    N O  (3.1) 

This is a point operator that replaces the brightness at points in the picture according to a linear 

brightness relation. The level controls overall brightness and is the minimum value of the output 

picture. The gain controls the contrast, or range, and if the gain is greater than unity, the output 

range will be increased, this process is illustrated in Figure 3.2. So the image, processed by k = 1.1 

and l = -10 will become brighter, Figure 3.2(a), and with better contrast, though in this case the 

brighter points are mostly set near to white (255). These factors can be seen in its histogram, Figure 

3.2(b). 

 

  

(a) brighter image (b) histogram of brighter image 

 Figure 3.2 Brightening an Image 

The basis of the implementation of point operators was given earlier, for inversion in Code 1.2. 

The stretching process can be displayed as a mapping between the input and output ranges, 

according to the specified relationship, as in Figure 3.3. Figure 3.3(a) is a mapping where the output 

is a direct copy of the input (this relationship is the dotted line in Figures 3.3(c) and (d)); Figure 

3.3(b) is the mapping for brightness inversion where dark parts in an image become bright and vice 

versa. Figure 3.3(c) is the mapping for addition and Figure 3.3(d) is the mapping for multiplication 

(or division, if the slope was less than that of the input). In these mappings, if the mapping produces 

values that are smaller than the expected minimum (say negative when zero represents black), or 

larger than a specified maximum, then a clipping process can be used to set the output values to a 

chosen level. For example, if the relationship between input and output aims to produce output 

points with intensity values greater than 255, as used for white, the output value can be set to white 

for these points, as it is in Figure 3.2.  
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(a) copy (b) brightness inversion 

  

(c) brightness addition (d) brightness scaling by multiplication 

Figure 3.3 Intensity Mappings 

Finally, rather than simple multiplication we can use arithmetic functions such as the logarithm to 

reduce the range or the exponent to increase it. This can be used, say, to equalise the response of a 

camera, or to compress the range of displayed brightness levels. If the camera has a known 

exponential performance, and outputs a value for brightness which is proportional to the 

exponential of the brightness of the corresponding point in the scene of view, the application of a 

logarithmic point operator will restore the original range of brightness levels. The implementation 

of point operators for arithmetic functions is illustrated in Code 3.1. This code simply computes the 

logarithm or exponential value of the value at each pixel position.  

for x,y in itertools.product(range(0, width), range(0, height)): 

    # Set the pixels in the Logarithmic 

    outputLogarithmicImage[y,x] = 20 * log(inputImage[y,x] * 100.0)  

     

    # Set the pixels in the Exponential image 

    outputExponentialImage[y,x] = 20 * exp(inputImage[y,x] / 100.0)   

Code 3.1 Point Operations 

The effect of replacing brightness by a scaled version of its natural logarithm (implemented as 

Nx,y = 20ln(100Ox,y)) is shown in Figure 3.4(a); the effect of a scaled version of the exponent 

(implemented as Nx,y = 20exp(Ox,y/100)) is shown in Figure 3.4(b). The scaling factors were chosen 

to ensure that the resulting image can be displayed since the logarithm or exponent greatly reduce 

or magnify, pixel values, respectively. This can be seen in the results: Figure 3.4(a) is dark with a 

small range of brightness levels whereas Figure 3.4(b) is much brighter, with greater contrast. 
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Naturally, application of the logarithmic point operator will change any multiplicative changes in 

brightness to become additive. As such, the logarithmic operator can find application in reducing 

the effects of multiplicative intensity change. The logarithm operator is often used to compress 

Fourier transforms for display purposes. This is because the d.c. component can be very large, or 

the contrast too large, to allow the other points to be seen. 

 

  

(a) logarithmic compression (b) exponential expansion 

Figure 3.4 Applying Exponential and Logarithmic Point Operators 

 

In hardware, point operators can be implemented using look-up-tables (LUTs). LUTs give an output 

that is programmed, and stored, in a table entry that corresponds to a particular input value. If the 

brightness response of the camera is known, it is possible to pre-program an LUT to make the 

camera response equivalent to a uniform or flat response across the range of brightness levels (in 

software, this can be implemented as an array or by using a map associative container). 

3.3.2  Histogram Normalisation  

Popular techniques to stretch the range of intensities include histogram (intensity) normalisation. 

Here, the original histogram is stretched, and shifted, to cover all the 256 available levels. If the 

original histogram of an old picture O starts at minO  and extends up to maxO  brightness levels, 

then we can scale up the image so that the pixels in the new picture N lie between a minimum output 

level minN  and a maximum level maxN , simply by scaling up the input intensity levels according 

to: 

   Nyxminmin
minmax

minmax
yxyx ,1,,, 




 NOO

OO

NN
N  (3.2) 

Code 3.2 gives an implementation of intensity normalisation. The code uses an output ranging from 

Nmin = 0 to Nmax = 255 that is the maximum range for images that use a byte per pixel. This is 

scaled by the input range that is determined from the maximum and minimum values are returned 

by the imageMaxMin function. Each point in the picture is then scaled as in Equation 3.2. Note 

that Matlab's imagesc function appears to effect normalisation. 

 
# Maximum and range 

maxVal, miniVal = imageMaxMin(inputImage)  

brightRange = float(maxVal - miniVal)  

 

# Set the pixels in the output image 

for x,y in itertools.product(range(0, width), range(0, height)): 

     

    # Normalize the pixel value according to the range 
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    outputNormalizedImage[y,x] = ((inputImage[y,x] - miniVal) * 255.0 / brightRange) 

Code 3.2 Intensity Normalisation 

 

The normalisation process is illustrated in Figure 3.5, and can be compared with the original image 

and histogram in Figure 3.1. An intensity-normalised version of the image is shown in Figure 3.5(a) 

which now has better contrast and appears better to human vision. Its histogram, Figure 3.5(b), 

shows that the intensity now ranges across all available levels (there is actually one black pixel!). 

3.3.3  Histogram Equalisation 

Histogram equalisation is a non-linear process aimed to highlight image brightness in a way 

particularly suited to human visual analysis. Histogram equalisation aims to change a picture in 

such a way as to produce a picture with a flatter histogram, where all levels are equiprobable. In 

order to develop the operator, we can first inspect the histograms. For a range of M levels then the 

histogram plots the points per level against level. For the input (old) and the output (new) image, 

the number of points per level is denoted as O(l) and N(l) (for 0<l<M), respectively. For square 

images, there are N2 points in the input and the output image, so the sum of points per level in each 

should be equal: 
 

 
 

(a) intensity normalised image (b) histogram of intensity normalised image 

 

 

(c) histogram equalised image (d) histogram of histogram equalised image 

Figure 3.5 Illustrating Intensity Normalisation and Histogram Equalisation 
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Also, this should be the same for an arbitrarily chosen level p, since we are aiming for an output 

picture with a uniformly flat histogram. So the cumulative histogram up to level p should be 

transformed to cover up to the level q in the new histogram: 
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Since the output histogram is uniformly flat, the cumulative histogram up to level p should be a 

fraction of the overall sum. So the number of points per level in the output picture is the ratio of the 

number of points to the range of levels in the output image: 
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So the cumulative histogram of the output picture is:  
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By Equation 3.4 this is equal to the cumulative histogram of the input image, so that: 
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This gives a mapping for the output pixels at level q, from the input pixels at level p as: 
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This gives a mapping function that provides an output image that has an approximately flat 

histogram. The mapping function is given by phrasing Equation 3.8 as an equalising function (E) 

of the level (q) and the image (O) as  
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The output image is then 

  ),( ,, OON yxyx E  (3.10) 

function equalised = equalise(image) 

%get dimensions 

[rows,cols]=size(image);  

%specify range of levels 

range=255; 

%and the number of points 

number=cols*rows; 

  

%initialise the image histogram 

hist(1:256)=0; 

  

%work out the histogram 

for x = 1:cols %address all columns 

  for y = 1:rows %address all rows 

    hist(image(y,x)+1)=hist(image(y,x)+1)+1; 

  end 

end; 

  

%evaluate the cumulative histogram 

sum=0; 

for i=1:256 
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  sum=sum+hist(i); 

  cumhist(i)=floor(sum*range/number); %Eq. 3.9 

end 

  

%map using the cumulative histogram 

for x = 1:cols %address all columns 

  for y = 1:rows %address all rows 

    equalised(y,x)=cumhist(image(y,x)); %Eq 3.10 

  end 

end 

Code 3.3 Histogram Equalisation 

The result of equalising an image is shown in Figures 3.5(c) and (d). The intensity equalised image, 

Figure 3.5(c) has much better defined features than in the original version (Figure 3.1). The 

histogram, Figure 3.5(d), reveals the non-linear mapping process whereby white and black are not 

assigned equal weight, as they were in intensity normalisation. Accordingly, more pixels are 

mapped into the darker region and the brighter intensities become better spread, consistent with the 

aims of histogram equalisation. 

Its performance can be very convincing since it is well mapped to the properties of human vision. 

If a linear brightness transformation is applied to the original image then the equalised histogram 

will be the same. If we replace pixel values with ones computed according to Equation 3.1, the 

result of histogram equalisation will not change. An alternative interpretation is that if we equalise 

images (prior to further processing) then we need not worry about any brightness transformation in 

the original image. This is to be expected, since the linear operation of the brightness change in 

Equation 3.2 does not change the overall shape of the histogram, only its size and position. 

However, noise in the image acquisition process will affect the shape of the original histogram, and 

hence the equalised version. So the equalised histogram of a picture will not be the same as the 

equalised histogram of a picture with some noise added to it. You cannot avoid noise in electrical 

systems, however well you design a system to reduce its effect. Accordingly, histogram equalisation 

finds little use in generic image processing systems, except for display, though it can be potent in 

specialised applications. For these reasons, intensity normalisation is often preferred when a 

picture’s histogram requires manipulation. 

In implementation, the function equalise in Code 3.3, we shall use an output range where 

Nmin = 0 and Nmax = 255. The implementation first determines the cumulative histogram for each 

level of the brightness histogram. This is then used as a look up table for the new output brightness 

at that level. The look up table is used to speed implementation of Equation 3.9, since it can be 

precomputed from the image to be equalised. 

An alternative argument also against the use of histogram equalisation is that it is a non-linear 

process and is irreversible. We cannot return to the original picture after equalisation, and we cannot 

separate the histogram of an unwanted picture. On the other hand, intensity normalisation is a linear 

process and we can return to the original image, should we need to, or separate pictures - if required. 

Note that there have been extensions to histogram equalisation, and adaptive histogram 

equalisation with some extensions [Pizer87] has proved particularly enduring.  

3.3.4  Thresholding 

The last point operator of major interest is called thresholding. This operator selects pixels which 

have a particular value, or are within a specified range. It can be used to find objects within a picture 

if their brightness level (or range) is known. This implies that the object's brightness must be known 

as well. There are two main forms: uniform and adaptive thresholding. In uniform thresholding, 

pixels above a specified level are set to white, those below the specified level are set to black.  
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As shown in Code 3.4 the implementation of thresholding sets the value of the output image by an 

if condition according to the threshold parameter.  

for x,y in itertools.product(range(0, width), range(0, height)):     

    if inputImage[y,x] > threshold: 

        outputImage[y,x] = 255 

    else: 

        outputImage[y,x] = 0 

Code 3.4  Image Thresholding 

 

Given the original eye image, Figure 3.6 shows a thresholded image where all pixels above 160 

brightness levels are set to white, and those below 160 brightness levels are set to black. By this 

process, the parts pertaining to the facial skin are separated from the background; the cheeks, 

forehead and other bright areas are separated from the hair and eyes. This can therefore provide a 

way of isolating points of interest. 

 
 

 

(a) image (b) histogram (c) thresholded image 

Figure 3.6 Thresholding the Eye Image 

Uniform thresholding clearly requires knowledge of the grey level, or the target features might 

not be selected in the thresholding process. If the level is not known, histogram equalisation or 

intensity normalisation can be used, but with the restrictions on performance stated earlier. This is, 

of course, a problem of image interpretation. These problems can only be solved by simple 

approaches, such as thresholding, for very special cases.  
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Figure 3.7 Optimal Thresholding 

There are more advanced techniques, known as optimal thresholding. These usually seek to 

select a value for the threshold that separates an object from its background. This suggests that the 

object has a different range of intensities to the background, in order that an appropriate threshold 

can be chosen, as illustrated in Figure 3.7. Otsu’s method [Otsu79] is one of the most popular 

techniques of optimal thresholding; there have been surveys [Sahoo88, Lee90, Glasbey93] which 

compare the performance different methods can achieve. Essentially, Otsu's technique maximises 

the likelihood that the threshold is chosen so as to split the image between an object and its 

background. This is achieved by selecting a threshold that gives the best separation of classes, for 

all pixels in an image. The basis is use of the normalised histogram where the number of points at 

each level is divided by the total number of points in the original image. As such, this represents a 

probability distribution for the intensity levels as  
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This can be used to compute then zero- and first-order cumulative moments of the normalised 

histogram up to the kth level as 
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The total mean level T  of the image is given by 
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The variance of the class separability (the similarity between the variables of the same class) is 

then the ratio 
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The optimal threshold is the level for which the variance of class separability is at its maximum, 

namely the optimal threshold Topt is that for which the variance 

     2 2
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1 max
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k N
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 

  (3.17) 

The implementation of the optimal thresholding is shown in Code 3.5. The code finds the 

optimum threshold in two stages. First, it uses the histogram of the input image to compute the 

moments in Equations 3.13 and 3.14. A second step computes the separability measure in Equation 

3.16. The code keeps all the separability values for display, but in practice we only require to keep 

the maximum value.   

# Obtain histograms 

normalization = 1.0 / float(width * height) 

w[0] = normalization * inputHistogram[0] 

for level in range(1, 256): 

    w[level] = w[level-1] + normalization * inputHistogram[level] 

    m[level] = m[level-1] + level * normalization * inputHistogram[level] 

     

# Look for the maximum 

maximumLevel = 0  

for level in range(0, 256): 

    if w[level] * (float(level) - w[level]) != 0: 

        separability[level] = float(pow( ( m[255] * w[level] - m[level]), 2)      \ 

                                   / (w[level] * (float(level) - w[level]))) 

             

        if separability[level] > separability[maximumLevel]: 

            maximumLevel = level 

Code 3.5 Optimal Thresholding  

Figure 3.8 shows an example of optimal thresholding obtained with Code 3.5. Figure 3.8(a) 

shows the separability computed for each potential threshold. Low values represent thresholds that 

produce two regions with high inter class variance and high values minimize the interclass variance. 

The threshold for the maximum value is used to produce the thresholded image in Figure 3.8(b). In 

this figure the pixels are divided in two classes whose variance is minimum compared with any 

other possible threshold.  

  

(a) separability (b) thresholded image  

Figure 3.8 Optimal Thresholding Example 
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(a) thresholding at level 160 (b) thresholding by Otsu (level = 127) 

Figure 3.9 Thresholding the Eye Image: Manual and Automatic 

A comparison of uniform thresholding with optimal thresholding is given in Figure 3.9 for the 

eye image. The threshold selected by Otsu's operator is actually lower than the value selected 

manually, and so the thresholded image does omit some detail around the eye, especially in the 

eyelids. However, the selection by Otsu is automatic, as opposed to manual and this can be to 

application advantage in automated vision. Consider for example the need to isolate the human 

figure in Figure 3.10(a). This can be performed automatically by Otsu as shown in Figure 3.10(b). 

Note however that there are some extra points, due to illumination, which have appeared in the 

resulting image together with the human subject. It is easy to remove the isolated points, as we will 

see later, but more difficult to remove the connected ones. In this instance, the size of the human 

shape could be used as information to remove the extra points though you might like to suggest 

other factors that could lead to their removal.  

  

(a) walking subject (b) automatic thresholding by Otsu 

Figure 3.10 Thresholding an Image of a Walking Subject 

 

Also, we have so far considered global techniques, methods that operate on the entire image. 

There are also locally adaptive techniques that are often used to binarise document images prior to 

character recognition. As mentioned before, surveys of thresholding are available, and one 

approach [Rosin01] targets thresholding of images whose histogram is unimodal (has a single 

peak). One survey [Trier95] compares global and local techniques with reference to document 

image analysis. These techniques are often used in statistical pattern recognition: the thresholded 

object is classified according to its statistical properties. However, these techniques find less use in 

image interpretation, where a common paradigm is that there is more than one object in the scene, 

such as Figure 3.6 where the thresholding operator has selected many objects of potential interest. 

As such, only uniform thresholding is used in many vision applications, since objects are often 

occluded (hidden), and many objects have similar ranges of pixel intensity. Accordingly, more 
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sophisticated metrics are required to separate them, by using the uniformly thresholded image, as 

discussed in later Chapters. Further, the operation to process the thresholded image, say to fill in 

the holes in the silhouette or to remove the noise on its boundary or outside, is morphology which 

is covered later in Section 3.6. In general, it is often prudent to investigate the more sophisticated 

techniques of feature selection and extraction, to be covered later. Prior to that, we shall investigate 

group operators, which are a natural counterpart to point operators. 

3.4  Group Operations 

3.4.1  Template Convolution 

Group operations calculate new pixel values from a pixel’s neighbourhood by using a ‘grouping’ 

process. The group operation is usually expressed in terms of template convolution where the 

template is a set of weighting coefficients. The template is usually square, and its size is usually 

odd to ensure that the result positioned precisely on a pixel. The size is usually used to describe the 

template; a 33  template is three pixels wide by three pixels long. New pixel values are calculated 

by placing the template at the point of interest. Pixel values are multiplied by the corresponding 

weighting coefficient and added to an overall sum. The sum (usually) evaluates a new value for the 

centre pixel (where the template is centred) and this becomes the pixel in the output image. If the 

template’s position has not yet reached the end of a line, the template is then moved horizontally 

by one pixel and the process repeats.  

 

 

Figure 3.11 Template Convolution Process 

 

This is illustrated in Figure 3.11 where a new image is calculated from an original one, by template 

convolution. The calculation obtained by template convolution at the centre pixel of the template 

in the original image becomes the point in the output result image. Since the template cannot extend 

beyond the original image, a new value cannot be computed for points at the border of the result 

image. When the template reaches the end of a line, it is repositioned to proceed from the start of 
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the next line. The process is shown part way through the raster scan, the next pixel to be calculated 

would be derived from the nine points to the right of the current position of the centre point of the 

template, and stored to the right of the point containing -7. For a 33  neighbourhood, Figure  3.12, 

nine weighting coefficients wt are applied to points in the original image to calculate a point in the 

new image. The position of the new point (at the centre) is shaded in the template. 

 
         

   w0 w1 w2    

   w3 w4 w5    

   w6 w7 w8    

         

Figure 3.12 3 3  Template and Weighting Coefficients 

 

To calculate the value in new image, N, at point with co-ordinates x,y, the template in Figure 

3.12 operates on an original image O according to: 

 , , ( ), ( )

template template

x y i j x i y j

i j

w
 

  N O  (3.18) 

where the coordinates of the image point ( ), ( )x i y j  denote the position of the point that matches 

the weighting coefficient position. Note that we cannot ascribe values to the picture’s borders. This 

is because when we place the template at the border, parts of the template fall outside the image 

and have no information from which to calculate the new pixel value. The width of the border 

equals half the size of the template. In Figure 3.11 the single pixel border points have been left 

blank. To calculate values for the border pixels, we have three choices: 

1. set the border to black (or deliver a smaller picture); 

2. assume (as in Fourier) that the image replicates to infinity along both dimensions and 

calculate new values by cyclic shift from the far border; or 

3. calculate the border pixel value from a smaller area. 

None of these approaches is optimal. The results in this book use the first option and set border 

pixels to black. Note that in many applications the object of interest is imaged centrally or, at least, 

imaged within the picture. As such, the border information is of little consequence to the remainder 

of the process. Here, the border points are set to black, by starting functions with a zero function 

which sets all the points in the picture initially to black (0).  

An alternative representation for this process is given by using the convolution notation as  

 OWN   (3.19) 

where N is the new image which results from convolving the template W (of weighting coefficients) 

with the image O. 

The Matlab implementation of a template convolution operator template_convolve is given 

in Code 3.6. This function accepts, as arguments, the picture image and the template to be 

convolved with it, template. The result of template convolution is an image convolved. The 

operator first sets the resulting image to black (zero brightness levels). The widths tc and tr give 

the range of picture points to be processed in the outer for loops that give the co-ordinates of all 

points resulting from template convolution. The template is convolved at each picture point by 

generating a running summation of the pixel values within the template’s window multiplied by the 

respective template weighting coefficient. 

 

function convolved = template_convolve(image,template) 



Basic Operations 

 15 

%get image dimensions 

[rows,cols]=size(image); 

%get template dimensions 

[trows,tcols]=size(template); 

  

%half of template rows is 

tr=floor(trows/2); 

%half of template cols is 

tc=floor(tcols/2); 

  

%set an output as black 

convolved(1:rows,1:cols)=0; 

  

%then convolve the template 

for x = tc+1:cols-tc %address all columns except border 
    for y = tr+1:rows-tr %address all rows except border 
        sum=0; %initialise the sum 
        for iwin=1:tcols %address all points in the template 
            for jwin=1:trows 
                sum=sum+image(y+jwin-tr-1,x+iwin-tc-1)*... % sum, Eq. 3.18 
                           template(trows-jwin+1,tcols-iwin+1); 
            end 
        end 
        convolved(y,x)=sum; %store as new point 
    end 
end 

 

Code 3.6 Template Convolution Operator 

 

Note that according to Eqn. 2.10, for convolution one of the signals is inverted along its principal 

axis. For images, convolution requires inversion along both axes which is why the template’s 

arguments are inverted in Code 3.6. We shall consider convolution again in the next Section, via 

the frequency domain, and in Section 5.3.2.  

Template convolution can of course be implemented in hardware and requires a two-line store, 

together with some further latches, for the (input) video data. The output is the result of template 

convolution, summing the result of multiplying weighting coefficients by pixel values. This is 

called pipelining, since the pixels are essentially move along a pipeline of information. Note that 

two line-stores can be used if the video fields only are processed. To process a full frame, one of 

the fields must be stored if it is presented in interlaced format. Processing can be analog, using 

operational amplifier circuits and Charge Coupled Device (CCD) for storage along bucket brigade 

delay lines. Finally, an alternative implementation is to use a parallel architecture: for Multiple 

Instruction Multiple Data (MIMD) architectures, the picture can be split into blocks (spatial 

partitioning); Single Instruction Multiple Data (SIMD) architectures can implement template 

convolution as a combination of shift and add instructions. 
 

         

   1/9 1/9 1/9    

   1/9  1/9 1/9    

   1/9 1/9 1/9    
         

Figure 3.13 33  Averaging Operator Template Coefficients 
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3.4.2  Averaging Operator 

For an averaging operator, the template weighting functions are unity (or 1/9 to ensure that the 

result of averaging nine white pixels is white, not more than white!). The template for a 33  

averaging operator, implementing Equation 3.18, is given by the template in Figure 3.13 where the 

location of the point of interest is again shaded. The averaging operator is then 

 
, ( ), ( )

1
x y x i y j

i M j NMN  

 N O  (3.20)  

where ( ), ( )x i y j  are the coordinates of image points within the template and M, N are the numbers 

of columns and rows in the template. The result of averaging an image with a 9 9  operator is 

shown in Figure 3.14. This shows that much of the detail has now disappeared revealing the broad 

image structure. In order to implement averaging by using the template convolution operator, we 

need to define a template and then convolve it with the image (note also that there is an averaging 

operator mean in Matlab that can be used for this purpose).  

 

  

(a) original (b) after averaging 

Figure 3.14 Applying Direct Averaging 

 

The effect of averaging is to reduce noise, this is its advantage. An associated disadvantage is that 

averaging causes blurring which reduces detail in an image. It is also a low pass filter since its effect 

is to allow low spatial frequencies to be retained, and to suppress high frequency components. A 

larger template, say 9 9  or 15 15 , will remove more noise (high frequencies) but reduce the 

level of detail. The size of an averaging operator is then equivalent to the reciprocal of the 

bandwidth of a low-pass filter it implements  

 

3.4.3  On Different Template Size 

Templates can be larger than 33 . Since they are usually centred on a point of interest, to produce 

a new output value at that point, they are usually of odd dimension. For reasons of speed, the most 

common sizes are 33 , 55  and 77 . Beyond this, say 99 , many template points are used to 

calculate a single value for a new point, and this imposes high computational cost, especially for 

large images. (For example, a 99  operator covers 9 times more points than a 33  operator.) 

Square templates have the same properties along both image axes. Some implementations use 

vector templates (a line), either because their properties are desirable in a particular application, or 

for reasons of speed. 
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The effect of larger averaging operators is to smooth the image more, to remove more detail 

whilst giving greater emphasis to the large structures. This is illustrated in Figure 3.15. A 55  

operator, Figure 3.15(a), retains more detail than a 77  operator, Figure 3.15(b), and much more 

than a 99  operator, Figure 3.15(c). Conversely, the 99  operator retains only the largest 

structures such as the eye region (and virtually removing the iris) whereas this is retained more by 

the operators of smaller size. Note that the larger operators leave a larger border (since new values 

cannot be computed in that region) and this can be seen in the increase in border size for the larger 

operators, in Figures 3.15(b) and (c). 

 

   

(a) 55  (b) 77  (c) 99  

Figure 3.15 Illustrating the Effect of Window Size 

 

3.4.4  Template Convolution via the Fourier Transform 

The Fourier transform actually gives an alternative method to implement template convolution and 

to speed it up, for larger templates. The question to be answered here is ‘how big?’. In Fourier 

transforms, the process that is dual to convolution is multiplication (as in Section 2.3). So template 

convolution (denoted  ) can be implemented by multiplying the Fourier transform of the template 

  T  with the Fourier transform of the picture,   P ,  to which the template is to be applied. It is 

perhaps a bit confusing that we appear to be multiplying matrices, but the multiplication is point-

by-point in that the result at each point is that of multiplying the (single) points at the same positions 

in the two matrices.  The result needs to be inverse transformed to return to the picture domain.  

     1 .    P T P T  (3.21) 

The transform of the template and the picture need to be the same size before we can perform 

the point by point multiplication ( . ). Accordingly, the image containing the template is zero-

padded prior to its transform which simply means that zeroes are added to the template which lead 

to a template of the same size as the image. The process is illustrated in Code 3.7(a)  and starts by 

calculation of the transforms of the image and of the zero-padded template. Then, the transform of 

the template is multiplied by the transform of the picture point-by-point (using the .* operator). 

(Theoretical study of this process is presented in Section 5.3.2 where we show how the same process 

can be used to find shapes in images.) Finally, the inverse Fourier transform is used to deliver the 

result. Code 3.7(b) shows an implementation in Python. This code computes the summation 

defining the Fourier transform by performing an iteration. First, the template is flipped and padded. 

Afterwards, the coefficients are obtained by performing the multiplication of the complex numbers 

of the image and of the template coefficients. 

 

image_eye=imread('eye_orig.jpg'); 
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image_eye=double(image_eye(:,:,1)); 

image_transform=fft2(image_eye); 

template_transform=fft2(pad(image_eye, ave_template(7))); 

inverted_transform=ifft2(rearrange(image_transform.*template_transform)); 

The transform based implementation of direct averaging can be combined as 

averaged_image=ifft2(rearrange(fft2(eye).*fft2(pad(eye,ave_template(7))))); 

(a) Matlab 
# Padding 

widthPad, heightPad = width+kernelSize-1, height+kernelSize-1 

 

templatePadFlip = createImageF(widthPad, heightPad) 

for x,y in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

    templatePadFlip[y, x] = kernelImage[kernelSize-y-1, kernelSize-x-1] 

 

# Compute coefficients  

imageCoeff, maxFrequencyW, maxFrequencyH = computeCoefficients(inputPad) 

templateCoeff, _, _ = computeCoefficients(templatePadFlip)    

 
# Frequency domain multiplication 

for kw,kh in itertools.product(range(-maxFrequencyW, maxFrequencyW + 1),     \ 

                               range(-maxFrequencyH, maxFrequencyH + 1)): 

    w = kw + maxFrequencyW  

    h = kh + maxFrequencyH 

     

    resultCoeff[h,w][0] = (imageCoeff[h,w][0] * templateCoeff[h,w][0] -      \ 

                           imageCoeff[h,w][1] * templateCoeff[h,w][1]) 

    resultCoeff[h,w][1] = (imageCoeff[h,w][1] * templateCoeff[h,w][0] +      \ 

                           imageCoeff[h,w][0] * templateCoeff[h,w][1]) 

(b) Python 

Code 3.7 Template Convolution via the Fourier Transform 

 

Code 3.7 is simply a different implementation of direct averaging. It achieves a similar result, 

but by transform domain calculus. The operation is shown in Figure 3.16: an image of the eye (a) 

is transformed to give (d); the averaging template is padded to the same size as the image (b) and 

transformed (e); the multiplied transforms (f) are inverse transformed to give an averaged version 

of the eye (c). There is one major difference between the Fourier and the direct implementations: 

the borders of the images differ (where the border is of width equal to one half of the template’s 

width). This is because for direct averaging the border points are set to zero whereas in the Fourier 

implementation the image is assumed to replicate to infinity, as in Equation 2.26. (The rearrange 

function, Equation 2.30, is used since the padding function places the template at the centre of the 

image). Note that the template transform is a 2D sinc function viewed as an image and that the 

logarithm of the magnitude (Section 3.3.1) has been used to display all transforms.  
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(a) image of eye (b) padded averaging 

template 

(c) resulting averaged 

image 

   

(d) image transform (e) template transform (f) multiplied transforms 

Figure 3.16 Template Convolution via Fourier Transform 

 

 It can be faster to use the transform-based implementation (Code 3.7) rather than the direct 

implementation (Code 3.6), depending on the size of the template. For a square template with 

N N  points the computational cost of a 2D FFT is of the order of 2N2log2(N). If the transform of 

the template is pre-computed, there are two transforms required and there is one multiplication for 

each of the N2 transformed points. The total cost of the Fourier implementation of template 

convolution is then of the order of 

 
2 2

24 log ( )FFTC N N N   (3.22) 

The cost of the direct implementation for a mm  template is then m2 multiplications for each 

image point, so the cost of the direct implementation is of the order of 

 
22mNCdir   (3.23) 

For Cdir<CFFT, we require: 

 
2 2 2 2

24 log ( )N m N N N   (3.24) 

If the direct implementation of template matching is faster than its Fourier implementation, we need 

to choose m so that 

 
2

24log ( ) 1m N   (3.25) 

This implies that, for a 256×256 image, a direct implementation is fastest for 33  and 55  

templates, whereas a transform-based calculation is faster for larger ones. An alternative analysis 

[Campbell69] suggested that [Gonzalez17] ‘if the number of non-zero terms in (the template) is less 

than 132 then a direct implementation .... is more efficient than using the FFT approach’. In 

OpenCV, for some versions the limit appears to 7×7 [OpenCV-TM] for using the FFT and for a 

kernel size of 55 or less a direct version is used. An 11 11 operator is a considerably larger 

template than our analysis suggests, whereas OpenCV has the same limit as the analysis here. This 

might be due to higher considerations of complexity than our analysis has included. There are, 

naturally, further considerations in the use of transform calculus, the most important being the use 

of windowing (such as Hamming or Hanning) operators to reduce variance in high order spectral 

estimates. This implies that template convolution by transform calculus should be used when large 

templates are involved, and when speed is critical. If speed is indeed critical, it might be prudent to 

implement the operator in dedicated hardware, as described earlier. 
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3.4.5  Gaussian Averaging Operator 

The Gaussian averaging operator has been considered to be optimal for image smoothing. The 

template for the Gaussian operator has values set by the Gaussian relationship. The Gaussian 

function g at coordinates x,y is controlled by the variance 
2  according to: 

 

 2 2

22
2

1
( , , )

2

x y

g x y e 


 

  (3.26) 

   

(a) 33  (b) 55  (c) 77  

Figure 3.17 Applying Gaussian Averaging 

 

Equation 3.26 gives a way to calculate coefficients for a Gaussian template which is then convolved 

with an image. The effects of selection of Gaussian templates of differing size are shown in Figure 

3.17. The Gaussian function essentially removes the influence of points greater than 3 in (radial) 

distance from the centre of the templateThe 33  operator, Figure 3.17(a), retains many more of 

the features than those retained by direct averaging (Figure 3.15). The effect of larger size is to 

remove more detail (and noise) at the expense of losing features. This is reflected in the loss of 

internal eye component by the 55  and the 77 operators in Figures 3.17(b) and (c), respectively. 

 

20
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 Figure 3.18 Gaussian Function 

 

A surface plot of the 2D Gaussian function of Equation 3.26 has the famous bell-shape, as shown 

in Figure 3.18 (for a window size of 19×19 and standard deviation of 4.0). The values of the function 

at discrete points are the values of a Gaussian template. Convolving this template with an image 

gives Gaussian averaging: the point in the averaged picture is calculated from the sum of a region 

where the central parts of the picture are weighted to contribute more than the peripheral points. 

The size of the template essentially dictates appropriate choice of the variance. The variance is 
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chosen to ensure that template coefficients drop to near zero at the template’s edge. The template 

for size 55  with variance unity is shown in Figure 3.19.  

         

  0.002 0.013 0.022 0.013 0. 002   

  0.013 0.060 0. 098 0. 060 0.013   

  0.022 0. 098 0.162 0. 098 0.022   

  0.013 0. 060 0.098 0. 060 0.013   

  0. 002 0.013 0.022 0.013 0. 002   

         

Figure 3.19 Template for the 55  Gaussian Averaging Operator ( 0.1 ) 

When a Gaussian template is convolved with an image, it produces Gaussian blurring. It is actually 

possible to give the Gaussian blurring function antisymmetric properties by scaling the x and y co-

ordinates. This can find application when an object’s shape, and orientation, is known prior to image 

analysis.  

By reference to Figure 3.17 it is clear that the Gaussian filter can offer improved performance 

compared with direct averaging: more features are retained whilst the noise is removed. This can 

be understood by Fourier transform theory. In Section 2.5.2 we found that the Fourier transform of 

a square is a two-dimensional sinc function. This has a frequency response where the magnitude of 

the transform does not reduce in a smooth manner and has regions where it becomes negative, 

called sidelobes. These can have undesirable effects since there are high frequencies that contribute 

more than some lower ones, a bit paradoxical in low-pass filtering which aims to remove noise. In 

contrast, the Fourier transform of a Gaussian function is another Gaussian function, which 

decreases smoothly without these sidelobes. This can lead to better performance since the 

contributions of the frequency components reduce in a controlled manner. 

centre = (kernelSize - 1) / 2 

sumValues = 0 

for x,y in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

    kernelImage[y,x] =  math.exp( -0.5 * (math.pow((x - centre)/sigma, 2.0) +    \ 

                                          math.pow((y - centre)/sigma, 2.0)) )  

    sumValues += kernelImage[y,x]  

      

# Normalisation 

for x,y in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

    kernelImage[y,x] /= sumValues 

Code 3.8 Gaussian Template Specification 

 In a software implementation of the Gaussian operator, we need a function implementing Equation 

3.26, the Gaussian_template function in Code 3.8. This is used to calculate the coefficients 

of a template to be centred on an image point. The two arguments are winsize, the (square) 

operator’s size, and the standard deviation sigma that controls its width, as discussed earlier. The 

operator coefficients are normalised by the sum of template values, as before. This summation is 

stored in sum, which is initialised to zero. The centre of the square template is then evaluated as 

half the size of the operator. Then, all template coefficients are calculated by a version of Equation 

3.26 which specifies a weight relative to the centre co-ordinates. Finally, the normalised template 

coefficients are returned as the Gaussian template. The operator is used in template convolution, 

via convolve, as in direct averaging (Code 3.6) or by Fourier (Code 3.7). 
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3.4.6  More on Averaging 

There is more than could be discussed on basic smoothing, e.g. smoothing was earlier achieved by 

low-pass filtering via the Fourier transform (Section 2.8), but we shall move on to other operators. 

The averaging process is actually a statistical operator since it aims to estimate the mean of a local 

neighbourhood. The error in the process is naturally high, for a population of N samples, the 

statistical error is of the order of: 

 
N

mean
error   (3.27) 

Increasing the averaging operator’s size improves the error in the estimate of the mean, but at the 

expense of fine detail in the image. The average is of course an estimate optimal for a signal 

corrupted by additive Gaussian noise. The estimate of the mean maximised the probability that the 

noise has its mean value, namely zero. According to the central limit theorem, the result of adding 

many noise sources together is a Gaussian distributed noise source. In images, noise arises in 

sampling, in quantisation, in transmission and in processing. By the  central limit theorem, the result 

of these (independent) noise sources is that image noise can be assumed to be Gaussian. In fact, 

image noise is not necessarily Gaussian-distributed, giving rise to more statistical operators. One 

of these is the median operator which has demonstrated capability to reduce noise whilst retaining 

feature boundaries (in contrast to smoothing which  blurs both noise and the boundaries), and the 

mode operator which can be viewed as optimal for a number of noise sources, including Rayleigh 

noise, but is very difficult to determine for small, discrete, populations.  

                

 2 8 7             

 4 0 6   2 4 3 8 0 5 7 6 7  

 3 5 7             

                

(a) 33 region (b) unsorted vector 
                

      0 2 3 4 5 6 7 7 8  

          median  
  

     (c) sorted vector, giving median 

Figure 3.20 Finding the Median from a 33  Template. 

 

3.5  Other Image Processing Operators 

3.5.1  Median Filter 

The median is another frequently used statistic; the median is the centre of a rank-ordered 

distribution. The median is usually taken from a template centred on the point of interest. Given the 

arrangement of pixels in Figure 3.20(a), the pixel values are arranged into a vector format, Figure 

3.20(b). The vector is then sorted into ascending order, Figure 3.20(c). The median is the central 

component of the sorted vector, this is the fifth component since we have nine values. 

The median can of course be taken from larger template sizes. The development here has aimed 

not only to demonstrate how the median operator works, but also to provide a basis for further 
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development. The rank ordering process is computationally demanding (slow) and motivates study 

into the deployment of fast algorithms, such as Quicksort, (e.g. [Huang79] is an early approach), 

though other approaches abound [Weiss06]. The computational demand also has motivated use of 

template shapes, other than a square. A selection of alternative shapes is shown in Figure 3.21. 

Common alternative shapes include a cross or a line (horizontal or vertical), centred on the point of 

interest, which can afford much faster operation since they cover fewer pixels. The basis of the 

arrangement presented here could be used for these alternative shapes, if required. 

 
             

             

             

             
             

(a) cross (b) horizontal line (c) vertical line 

Figure 3.21 Alternative Template Shapes for Median Operator 

 

The median has a well-known ability to remove salt and pepper noise. This form of noise, arising 

from say decoding errors in picture transmission systems, can cause isolated white and black points 

to appear within an image. It can also arise when rotating an image, when points remain unspecified 

by a standard rotation operator (Chapter 10), as in a texture image, rotated by 10o in Figure 3.22(a). 

When a median operator is applied, the salt and pepper noise points will appear at either end of the 

rank ordered list and are removed by the median process, as shown in Figure 3.22(b). The median 

operator has practical advantage, due to its ability to retain edges (the boundaries of shapes in 

images) whilst suppressing the noise contamination. As such, like direct averaging, it remains a 

worthwhile member of the stock of standard image processing tools. For further details concerning 

properties and implementation, have a peep at [Hodgson85]. (Note that practical implementation 

of image rotation is a Computer Graphics issue, and is usually by texture mapping; further details 

can be found in [Hearn97].) 

 

  

(a) rotated fence (b) median filtered 

Figure 3.22 Illustrating Median Filtering 

 

Code 3.9 illustrates the process of applying a median filter to an image. Each pixel defines a list 

containing the values in a window region. The value of the pixel in the output image is obtained by 

finding the central element of the sorted list. The image in Figure 3.22 (b) was obtained using Code 

3.9 with a kernel size parameter of 5.  
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for x,y in itertools.product(range(0, width), range(0, height)): 

    region = [ ] 

    for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

 

        posY = y + wy - kernelCentre 

        posX = x + wx - kernelCentre  

         

        if posY > -1 and posY <  height and  posX > -1 and posX <  width: 

            region.append(inputImage[posY,posX])  

     

    numPixels = len(region)  

    if  numPixels > 0: 

        region.sort() 

        outputImage[y,x] = region[numPixels/2] 

Code 3.9  Median Filtering 

 

3.5.2  Mode Filter 

The mode is the final statistic of interest, though there are more advanced filtering operators to 

come. The mode is of course very difficult to determine for small populations and theoretically 

does not even exist for a continuous distribution. Consider for example determining the mode of 

the pixels within a square 55  template. Naturally, it is possible for all 25 pixels to be different, 

so each could be considered to be the mode. As such we are forced to estimate the mode: the 

truncated median filter, as introduced by Davies [Davies88], aims to achieve this. The truncated 

median filter is based on the premise that for many non-Gaussian distributions, the order of the 

mean, the median and the mode is the same for many images, as illustrated in Figure 3.23. 

Accordingly, if we truncate the distribution (i.e. remove part of it, where the part selected to be 

removed in Figure 3.23 is from the region beyond the mean) then the median of the truncated 

distribution will approach the mode of the original distribution. 

 

 

Figure 3.23 Arrangement of Mode, Median and Mean 

In implementation the operator first finds the mean and the median of the current window. The 

distribution of intensity of points within the current window is truncated on the side of the mean so 

that the median now bisects the distribution of the remaining points (as such not affecting 
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symmetrical distributions). So that the median bisects the remaining distribution, if the median is 

less than the mean, the point at which the distribution is truncated, upper, is  

 
 

)min(2

)min(

ondistributimedian

ondistributimedianmedianupper




 (3.28) 

If the median is greater than the mean, then we need to truncate at a lower point (before the mean), 

lower, given by 

 )max(2 ondistributimedianlower   (3.29) 

The median of the remaining distribution then approaches the mode. The truncation is performed 

by storing pixels values in a vector. The median of the truncated vector is then the output of the 

truncated median filter at that point. Naturally, the window is placed at each possible image point, 

as in template convolution. However, there can be several iterations at each position to ensure that 

the mode is approached. In practice only few iterations are usually required for the median to 

converge to the mode. The window size is usually large, say 77  or 99  or even more. 

Code 3.10 illustrates the implementation of the operator. The current window pixels are 

contained in the region list. The mean and median variables store statistics of the region and 

they are used to compute the values of the upper and lower variables according to Equation 

3.28 and Equation 3.29. These values are used to create the list truncatedRegion that contains 

the truncated vector. Finally, the centre point of this vector is used produce the output pixel value. 

The action of the operator is illustrated in Figure 3.24 when applied to a 128128  part of the 

ultrasound image (Figure 1.1(c)), from the centre of the image and containing a cross-sectional 

view of an artery. Ultrasound results in particularly noisy images, in part because the scanner is 

usually external to the body. The noise is actually multiplicative Rayleigh noise for which the mode 

is the optimal estimate. This noise obscures the artery which appears in cross-section in Figure 

3.24(a); the artery is basically elliptical in shape. The action of the 99  truncated median operator, 

Figure 3.24(b) is to remove noise whilst retaining feature boundaries whilst a larger operator shows 

better effect, Figure 3.24(c). An extra example is shown in Figure 3.24 (d). This image contains 

added salt and pepper noise to highlight the usefulness of the filter. We can observe that a small 

kernel is enough to remove such noise. However, edge definition is lost. This problem is more 

evident for larger kernels. 

 
kernelCentre = (kernelSize - 1) / 2 

for x,y in itertools.product(range(0, width), range(0, height)): 

         

    # Iterate Window to collect values to compute mean and median  

    region = [ ] 

    sumValues = 0 

    for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

        posY, posX = y + wy - kernelCentre, x + wx - kernelCentre  

         

        if posY > -1 and posY <  height and  posX > -1 and posX <  width: 

            sumValues += inputImage[posY,posX] 

            region.append(inputImage[posY,posX])  

     

    # Compute mean and median of the window 

    numPixels = len(region) 

    if numPixels > 0: 

         

        # Mean and median 

        mean = sumValues / numPixels  

        region.sort() 

        median = region[numPixels/2] 

         

        # Upper and low 

        upper, lower = 2.0*median-region[0], 2.0*median-region[numPixels-1] 
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        # Create a list of truncated values  

        truncatedRegion = [ ]             

        for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

            posY, posX = y + wy - kernelCentre, x + wx - kernelCentre 

             

            if posY > -1 and posY <  height and  posX > -1 and posX <  width: 

                if (inputImage[posY,posX] < upper and median < mean) or               

\ 

                   (inputImage[posY,posX] > lower and median > mean): 

                    truncatedRegion.append(inputImage[posY,posX])    

                      

        # Compute median of truncated pixels                  

        numTruncatedPixels = len(truncatedRegion)  

        if  numTruncatedPixels > 0:   

            truncatedRegion.sort() 

            outputImage[y,x] = truncatedRegion[numTruncatedPixels/2]     

        else: 

            outputImage[y,x] = median 

Code 3.10  Truncated Median Filtering 

 

Close examination of the result of the truncated median filter is that a selection of boundaries 

are preserved which are not readily apparent in the original ultrasound image. This is one of the 

known properties of median filtering: an ability to reduce noise whilst retaining feature boundaries. 

Indeed, there have actually been many other approaches to speckle filtering; the most popular for 

ultrasound include direct averaging [Shankar86], median filtering, adaptive (weighted) median 

filtering [Loupas87] and with basis using nonlocal means [Coupé09] and anisotropic (coherent) 

diffusion [Abd-Elmoniem 2002] (the latter two to be covered next). 

 

   

(a) part of ultrasound image (b) 99 operator (c) 1313 operator 

   

(d) image (e) 3×3 operator (f) 9×9 operator 
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Figure 3.24 Applying Truncated Median Filtering 

 

3.5.3  Non-Local Means 

The non-local means operator [Buades05] is an extended version of the averaging operator. The 

basic function of the operator is to assign a point a value that is the mean of an area that is closest 

to the mean at the value of the point, rather than the mean at that point. As the original paper put it 

“the denoised value at x is a mean of the values of all points whose Gaussian neighbourhood looks 

like the neighbourhood of x”. As the former this was rather hard to express and the latter is rather 

terse, it will be difficult to understand. So let’s slow down a bit. By denoting the average (mean) at 

point p as  x p , for an N N region, from Equation 3.20  

   ( ), ( )2

1
x i y j

i N j N

x p
N  

 O  (3.30) 

where ( ), ( )x i y j  are the coordinates of image points within the template. If this operation is 

performed over the whole image, we have applied the direct averaging operator. The parts of the 

process are shown in Figure 3.25. 

 

 

Figure 3.25 Non-Local Means Process 

 

As averaging processes use a weighted sum if we use the Gaussian function, via Equation 3.26, to 

calculate a weighting 𝑤 between the average at point p and the average at point q  

       
    

2

22
2

1
,

2

x p x q

w p q g x p x q e 



 

    (3.31) 

Then the weight will be maximum when    x p x q and much less when the two averages are 

very different. The product    ,x p w p q  will be close to  x p  when the mean of the point of 

interest p is the same as the mean of the region at point q. We shall use an M M  search region. 

The non-local means operator is then a weighted summation 
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 (3.32)  

where k is the normalising function     
i M j M

k g x p x q
 

  . The parameters that must be chosen 

are the window size of the averaging operator, N, the size of the search region, M, and the standard 

deviation. A Matlab implementation is given in Code 3.11 which follows the equations above. The 

border of the resulting image is set to half the window size of the larger of the averaging and range 

operators. 

 

function filtered = non_local_means(image,winsize,searchsize,st_dev) 

 

%get image dimensions 

[rows,cols]=size(image); 

  

%set the output image to black 

filtered(1:rows,1:cols)=0; 

local_mean(1:rows,1:cols)=0; 

  

%half of template is 

halfwin=floor(winsize/2);  

%and half of the search 

halfsearch=floor(searchsize/2); 

  

%process points according to largest window function 

if winsize>searchsize 

    border=halfwin; %normal case 

else 

    border=halfsearch; %which is possible, but daft 

end 

  

%%then form the local averages 

local_mean=floor(ave(image,winsize)); 

  

%we start by looking at all image points except those in the border 

for x = border+1:cols-border  

  for y = border+1:rows-border 

      %need to total up the weights (for later normalisation) 

      weightsum=0; 

      %need to total up the weighted points 

      productsum=0; 

      for iwin = 1:searchsize 

        for jwin = 1:searchsize 

            % Gaussian weight based on the intensity difference %Eq. 3.31 

            weightp=exp(-(local_mean(y+jwin-halfsearch-1,x+iwin-halfsearch-1)-... 

                                local_mean(y,x))^2/(2*st_dev*st_dev)); 

            %and add a weighted amount of the image information 

            productsum=productsum+weightp*... %Eq 3.32 

                                image(y+jwin-halfsearch-1,x+iwin-halfsearch-1); 

            %and add up the weights 

            weightsum=weightsum+weightp; 

        end 

      end 

      filtered(y,x)=floor(productsum/weightsum); 

  end 

end 

 

Code 3.11 Non-Local Means Operator 
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The effect of the non-local means operator compared with Gaussian averaging is shown in Figure 

3.26. The image here Figure 3.26(a) is one to which synthetic noise has been added, and that is 

clearly seen to be removed by both operators. The function of the non-local means operator is to 

preserve regions of intensity and that is what is achieved (compare the wall of the hut in Figure 

3.26(b) to that in Figure 3.26(c)). These images are not intended to be optimal, since optimisation 

depends on the application image and whether preservation of detail is more important than 

preservation of regions. This is implicit in the compromise between the choice of the size of the 

search region and the variance 
2 . A common choice for the window size, N, of the averaging 

operator is 7 7  or  9 9  to preserve local features and larger search sizes, M, to reduce noise. The 

concern on the selection of the range and its relationship with the noise has motivated approaches 

that adapt the range according to image content [Kervrann06].  The image here Figure  3.26(a) is 

one to which synthetic noise has been added, and that is clearly seen to be removed by both 

operators. Note that the image would originally contain noise without the addition of its synthesised 

form, but the results would be less easy to see. Peformance analysis often depends on a chosen 

application.  

 

 

(a) original image 

  

(b) Gaussian averaging (c) nonlocal means 

Figure 3.26 Reducing Noise by Non Local Means and Gaussian Operators  
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Calling the operator non-local is actually rather misleading, as the originators later noted 

[Buades11] and a more appropriate name could have been semi-local means. Given that much of 

its popularity is due to performance, there is a natural interest in speeding the algorithm. One 

approach concentrates on implementation to improve speed [Dowson11] which, due to 

computational complexity, is needed when processing volumetric images.  

3.5.4  Bilateral filtering 

Bilateral filtering is a non-linear filter introduced by Tomasi and Manduchi [Tomasi98]. The filter 

is based on Gaussian averaging and prevents blurring across feature boundaries by decreasing the 

filter weight when the intensity difference is too large. By denoting Gaussian averaging as the 

convolution of the template in Equation 3.26 to form a new point 
,x yG  as a weighted sum of image 

points within a template 
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 (3.33)  

where d  is the standard deviation of this spatial (domain) operator, ( ), ( )x i y j  are again the 

coordinates of image points within the template, ks is the normalising coefficient, and the template 

is of size N N . The bilateral filtering process introduces another weighting based on the 

difference of image intensities. Inevitably, this is formed as a Gaussian (range) function in the 

manner of Equation 3.31 
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where ,p q  are point intensities and r  is the standard deviation, controlling width. When the 

intensity difference is small then this function is large, and the operator preserves feature 

boundaries, preventing blurring. This is one of the advantages of the median operator and a 

disadvantage of the Gaussian smoothing operator. The bilateral filter is given by the combination 

of spatial averaging with the Gaussian weighted difference in brightness as 
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 (3.35)  

where kb is the sum of the template coefficients.  The parameters that must be chosen are the 

window sizes and the two values for standard deviation. Note that the operator reverts to a Gaussian 

operator when r  is large, and a range filter when d  is large. The difference from non-local means 

is that both areas and feature boundaries are preserved, though we shall not show the result here, 

partly as performance is similar to that of anisotropic diffusion, the following smoothing operator. 
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Optimised versions are available, which do not need parameter selection [Paris08, Weiss06]. 

Another method is based on the use of the frequency domain and uses linear filtering [Dabov07].  

3.5.5  Anisotropic Diffusion 

Another form of smoothing that preserves the boundaries of the image features in the smoothing 

process [Perona90]. The process is called anisotropic diffusion, by virtue of its basis. Its result is 

illustrated in Fig 3.27(b) where the feature boundaries (such as those of the eyebrows or the eyes) 

in the smoothed image are crisp and the skin is more matte in appearance. This implies that we are 

filtering within the features and not at their edges. By way of contrast, the Gaussian operator result 

in Figure  3.27(c) smooths not just the skin but also the boundaries (the eyebrows in particular seem 

quite blurred) giving a less pleasing and less useful result. Since we shall later use the boundary 

information to interpret the image, its preservation is of much interest. The example in the second 

row in Figure 3.27 illustrates how the filter is capable of maintaining fine structures. Notice how 

the branches of the trees in the background and the large scale texture detail are all clear. 

 

   

(a) original image (b) anisotropic diffusion (c) Gaussian smoothing 

   

(d) original image (e) anisotropic diffusion (f) Gaussian smoothing 

Figure 3.27 Filtering by Anisotropic Diffusion and the Gaussian Operator 

 

As ever, there are some parameters to select to control the operation, so we shall consider the 

technique’s basis so as to guide their selection. Further, it is computationally more complex than 

other filtering operators. The basis of anisotropic diffusion is however rather complex, especially 

here, and invokes concepts of low-level feature extraction which are covered in the next Chapter. 

One strategy you might use is to mark this page then go ahead and read Sections 4.1 and 4.2 and 

return here. Alternatively, you could just plough on, since that is exactly what we shall do. The 

complexity is because the process not only invokes low-level feature extraction (to preserve feature 

boundaries) but also as its basis actually invokes concepts of heat flow, as well as introducing the 
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concept of scale space. So it will certainly be a hard read for many, but comparison of Figure 3.27(b) 

with Figure 3.27(c) shows that it is well worth the effort. 

The essential idea of scale space is that there is a multiscale representation of images, from low 

resolution (a coarsely sampled image) to high resolution (a finely sampled image). This is inherent 

in the sampling process where the coarse image is the structure and the higher resolution increases 

the level of detail. As such, we can derive a scale space set of images by convolving an original 

image with a Gaussian function,  

     ),,(0,,  yxgyxyx  PP  (3.36) 

where  0,yxP  is the original image, ),,( yxg  is the Gaussian template derived from Eqn. 3.26, 

and  yx,P  is the image at level  . The coarser level corresponds to larger values of the standard 

deviation  ; conversely the finer detail is given by smaller values. (Scale space will be considered 

again in Section 4.4.2 as it pervades the more modern operators). We have already seen that the 

larger values of   reduce the detail and are then equivalent to an image at a coarser scale, so this 

is a different view of the same process. The difficult bit is that the family of images derived this 

way can equivalently be viewed as the solution of the heat equation 

  t
t yx,PP 


  (3.37) 

where   denotes del, the (directional) gradient operator from vector algebra, and with the initial 

condition that  0,0 yxPP  . The heat equation itself describes the temperature T changing with time 

t as a function of the thermal diffusivity (related to conduction)   as 

 T
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T 2
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   (3.38) 

and in one dimensional form this is  
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so the temperature measured along a line is a function of time, distance, the initial and boundary 

conditions and the properties of a material. The direct relation of this with image processing is 

clearly an enormous ouch! There are clear similarities between Eqn. 3.39 and Eqn. 3.37. This is the 

same functional form and allows for insight, analysis and parameter selection. The heat equation, 

Eqn. 3.37 is the anisotropic diffusion equation 

     ttc
t yxyx ,, PP 


  (3.40) 

where   is the divergence operator (which essentially measures how the density within a region 

changes), with diffusion coefficient yxc , . The diffusion coefficient applies to the local change in 

the image  tyx,P  in different directions. If we have a lot of local change, we seek to retain it since 

the amount of change is the amount of boundary information. The diffusion coefficient indicates 

how much importance we give to local change: how much of it is retained. (The equation reduces 

to isotropic diffusion – Gaussian filtering - if the diffusivity is constant since 0c .) There is no 

explicit solution to this equation. By approximating differentiation by differencing (this is explored 

more in Section 4.2) the rate of change of the image between time step t and time step t+1 we have 

 )()1( tt
t

PPP 


  (3.41) 
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This implies we have an iterative solution, and for later consistency we shall denote the image P  

at time step t+1 as )1(1  tt
PP  so we then have 

     t
yxyx

tt tc ,,
1

PPP  (3.42) 

and again by approximation, using differences evaluated this time over the four compass directions 

North, South, East and West we have 

 yxyxyxN ,1,, )( PPP    (3.43) 

 yxyxyxS ,1,, )( PPP    (3.44) 

 , 1, ,( )E x y x y x y  P P P  (3.45) 

 , 1, ,( )W x y x y x y  P P P  (3.46) 

The template and weighting coefficients for these are shown in Figure 3.28.  
 

         

    1     

   1 -4 1    

    1     
         

Figure 3.28 Approximations by Spatial Difference in Anisotropic Diffusion 

 

When we use these as an approximation to the right hand side in Eqn. 3.42, we then have 

    )()()()( ,,,,,, PPPPP WyxEyxSyxNyx
t
yxyx cWcEcScNtc      which gives 

     t
yxWyxEyxSyxNyx

tt cWcEcScN ,,,,,
1 )()()()( PPPPPPPP   (3.47) 

where 4/10    and where yxyxyx cEcScN ,,, ,, and yxcW , denote the conduction coefficients in the 

four compass directions. By rearrangement of this we obtain the equation we shall use for the 

anisotropic diffusion operator 

     t
yxWyxEyxSyxNyx

tt cWcEcScN ,,,,,
1 )()()()( PPPPPPPP   (3.48) 

This shows that the solution is iterative: images at one time step (denoted by <t+1>) are computed 

from images at the previous time step (denoted <t>), given the initial condition that the first image 

is the original (noisy) image. Change (in time and in space) has been approximated as the difference 

between two adjacent points which gives the iterative equation and shows that the new image is 

formed by adding a controlled amount of the local change consistent with the main idea: that the 

smoothing process retains some of the boundary information.  

We are not finished yet though, since we need to find values for yxyxyx cEcScN ,,, ,, and yxcW , . 

These are chosen to be a function of the difference along the compass directions, so that the 

boundary (edge) information is preserved. In this way we seek a function that tends to zero with 

increase in the difference (an edge or boundary with greater contrast) so that diffusion does not take 

place across the boundaries, keeping the edge information. As such we seek 

  )(, PNyx gcN   (3.49) 

  )(, PSyx gcS    
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  )(, PEyx gcE    

  )(, PWyx gcW    

and one function that can achieve this is 

   2

2

, k
x

ekxg


  (3.50) 

(There is potential confusion with using the same symbol as for the Gaussian function, Eqn. 3.26, 

but we have followed the original authors’ presentation.) This function clearly has the desired 

properties since when the values of the differences   are large the function g is very small, 

conversely when   is small then g tends to unity. k is another parameter whose value we have to 

choose: it controls the rate at which the conduction coefficient decreases with increasing difference 

magnitude. The effect of this parameter is shown in Figure 3.29. Here, the solid line is for the 

smaller value of k and the dotted one is for a larger value. Evidently, a larger value of k means that 

the contribution of the difference reduces less than for a smaller value of k. In both cases, the 

resulting function is near unity for small differences and near zero for large differences, as required. 

An alternative to this is to use the function 

  
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1
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k
x

kxg


  (3.51) 

which has similar properties to the function in Eqn. 3.50. 
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Figure 3.29 Controlling the Conduction Coefficient in Anisotropic Diffusion 

 

This all looks rather complicated, so let’s recap. First, we want to filter an image by retaining 

boundary points. These are retained according to the value of k chosen in Eqn. 3. 50. This function 

is operated in the four compass directions, to weight the brightness difference in each direction, 

Eqn. 3.49. These contribute to an iterative equation which calculates a new value for an image point 

by considering the contribution from its four neighbouring points, Eqn. 3.48. This needs choice of 

one parameter . Further, we need to choose the number of iterations for which calculation 

proceeds. For information, Figure 3.27(b) was calculated over 20 iterations and we need to use 

sufficient iterations to ensure that convergence has been achieved. Figure 3.30 shows how we 

approach this. Figure 3.30(a) is after a single iteration, (b) after 2, (c) after 5 and (d) after 10 and 

(e) after 20. Manifestly we could choose to reduce the number of iterations, accepting a different 

result – or even go further. 
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(a) one iteration  (b) two iterations (c) five iterations (d) ten iterations (e) final result 

Figure 3.30 Iterations of Anisotropic Diffusion 

 

We also need to choose values for k and . By analogy, k is the conduction coefficient and low 

values preserve edges and high values allow diffusion (conduction) to occur – how much smoothing 

can take place. The two parameters are naturally inter-related, though  largely controls the amount 

of smoothing. Given that low values of either parameter means that no filtering effect is observed, 

we can investigate their effect by setting one parameter to a high value and varying the other. In 

Figures 3.31(a)-(c) we use a high value of k which means that edges are not preserved and we can 

observe that different values of  control the amount of smoothing. (A discussion of how this 

Gaussian filtering process is achieved can be inferred from Section 3.4.5.)  Conversely, we can see 

how different values for k control the level of edge preservation in Figures 3.31(d)-(f) where some 

structures are not preserved for larger values of k. 

 

   

(a) k = 100  and  = 0.05 (b) k = 100 and  = 0.15 (c) k = 100 and  = 0.25 

   

(d) k = 5 and  = 0.25 (e) k = 15 and  = 0.25 (f) k = 25 and  = 0.25 

Figure 3.31 Applying Anisotropic Diffusion 

 

By design, the result is akin with that of bilateral filtering (which it preceded) – indeed, the 

relationship has already been established [Barash02]. One of the major disadvantages is that 

anisotropic diffusion is an iterative process, the advantages include greater control of the filtering 

process. The original presentation of anisotropic diffusion [Perona90] is extremely lucid and well 
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worth a read if you consider selecting this technique. Naturally, it has greater detail on formulation 

and on analysis of results, than space here allows for (and is suitable at this stage). Amongst other 

papers on this topic, one [Black98] studied the choice of conduction coefficient leading to a function 

which preserves sharper edges and improves automatic termination. A more recent study has 

considered parameter and function choice [Tsiotsios13]. As ever, with techniques that require much 

computation there have been approaches which speed implementation, or achieve similar 

performance faster (e.g. [Fischl99]). 

Code 3.12 illustrates the implementation of the anisotropic process. The main loop contains the 

diffusion iterations. The iteration process uses a pair of images. The outputImage is the image 

computed in the previous iteration and image is the image updated in the current iteration. Each 

pixel value is updated according to the region defined by kernelSize. The implementation 

computes a weight for each pixel in the window according to Equation 3.50. This weight measures 

the differences in Equations 3.43 and is inversely proportional to the gradient or changes around 

the pixel. That is, when the pixel is close to an edge this value is low; and it will produce less 

smoothing. The weight is multiplied by lambda that controls the global smoothing. Notice that the 

weights are used to compute a simple average. In a more complete implementation the average 

could be replaced by a Gaussian operator that models the diffusion process more accurately. The 

examples in Figure 3.31 were obtained with this implementation.                
 

for iteration in range(0, numIterations): 

    for x,y in itertools.product(range(0, width), range(0, height)): 

        image[y, x] = outputImage[y, x] 

     

    for x,y in itertools.product(range(0, width), range(0, height)): 

        sumWeights = 0; 

        outputImage[y, x] = 0 

         

        centrePixleValue = image[y, x] 

        for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

            posY, posX = y + wy - kernelCentre, x + wx - kernelCentre  

   

            if posY > -1 and posY <  height and  posX > -1 and posX <  width:  

                # Weight according to gradient      

                weight = exp(-pow((image[posY, posX]-centrePixleValue)/k, 2) );  

                 

                # Use lambda to weight the pixel value 

                if posY != y and posX != x: 

                    weight *= lamda 

                     

                sumWeights += weight 

                outputImage[y, x] += weight * float(image[posY, posX])               

        # Normalize 

        if sumWeights > 0: 

            outputImage[y, x] /= sumWeights 

Code 3.12  Anisotropic Diffusion Process  

  

3.5.6  Comparison of Smoothing Operators 

A principled way to address performance is to add noise with known properties. This can be 

Gaussian noise for most operators, or black and white noise for the median operator. The results of 

some different image filtering operators are shown for comparison in Figure 3.32. (This is a detail 

– actually a restaurant called The Rock – as it is hard to see advantages in a whole image, as in 

Figure 3.26). The processed image is Figure 3.24(a) corrupted by added Gaussian noise, Figure 

3.32(b). All operators are 99  with parameters chosen for best performance. Naturally, ‘best’ is 
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subjective: is it best to retain feature boundaries (e.g. the roof edge or the foliage) or to retain local 

structure (e.g. the roof’s thatching) – or just the local average (e.g. the wall)? That invariably 

depends on application. Figure 3.32(c), (d), (e), (f), (g) and (h) result from averaging (mean), 

Gaussian averaging, median, truncated median, anisotropic diffusion and non-local means, 

respectively. Each operator shows a different performance: the mean operator removes much noise 

but blurs feature boundaries; Gaussian averaging retains more features, but shows little advantage 

over direct averaging; the median operator retains some noise but with clear feature boundaries; 

whereas the truncated median removes more noise, but along with picture detail. Clearly, the 

increased size of the truncated median template, by the results in Figures 3.24(b) and (c), can offer 

improved performance. This is to be expected since by increasing the size of the truncated median 

template, we are essentially increasing the size of the distribution from which the mode is found. 

The effect of filtering can be assessed by studying the distribution of noise in the resulting image. 

The noise remaining after filtering can be separated by differencing the original image (without the 

noise added) from the resulting filtered image. Some histograms are shown in Figure 3.32 for the 

addition of noise, the effect of Gaussian averaging and non-local means. Clearly the noise is reduced 

(tends on average to zero), and such information can be helpful when optimising choice of the 

parameters used. 

 

   

(a) original (b) with added noise (c) Gaussian smoothed 

   

(d) median (e) mode (f) anisotropic diffusion 
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(g) non local means  

(i) effect of filtering on noise 

Figure 3.32 Comparison of Filtering Operators  

 

This performance evaluation has been for real images since that is more appealing, but when the 

noise is unknown we can only perform subjective analysis. Accordingly, better appraisal is based 

on the use of feature extraction. Boundaries are the low-level features studied in the next Chapter; 

shape is a high-level feature studied in Chapter 5. Also, we shall later use the filtering operators as 

a basis for finding objects which move in sequences of images, in Chapter 9. 

Naturally, comparing the operators begs the question: when will denoising approaches be 

developed which are at the performance limit? Manifestly, the volume of research following 

development of a particular operator, say non local means, suggests that optimality is rarely 

achieved. One such study [Chatterjee10] concluded that “despite the phenomenal recent progress 

in the quality of denoising algorithms, some room for improvement still remains for a wide class 

of general images”. A later study [Levin11] showed, by modelling natural image statistics, that for 

small windows the state of the art denoising algorithms appeared to be approaching optimality with 

little room for improvement. A very recent approach concerns noise reduction and upsampling 

[Ham18]. There are now deep learning approaches for image quality improvement, e.g. [Zhang17] 

shows that discriminative model learning for image denoising has been attracting considerable 

attention due to its favourable performance. These will be introduced in Chapter 12.  Denoising is 

not finished and perhaps may never be. However, having covered the major noise filtering 

operators, we shall finish with them and move on to operators that preserve selected features, since 

feature detection is the topic of the following Chapter. 

 

3.5.7  Force Field Transform 

There are of course many more image filtering operators; we have so far covered those that are 

amongst the most popular. There are others which offer alternative insight, sometimes developed 

in the context of a specific application. By way of example, Hurley developed a transform called 

the force field transform [Hurley02, Hurley05] which uses an analogy to gravitational force. The 

transform pretends that each pixel exerts a force on its neighbours which is inversely proportional 

to the square of the distance between them. This generates a force field where the net force at each 

point is the aggregate of the forces exerted by all the other pixels on a "unit test pixel" at that point.  

This very large scale summation affords very powerful averaging which reduces the effect of noise. 

The approach was developed in the context of ear biometrics, recognising people by their ears, 

which has unique advantage as a biometric in that the shape of people’s ears does not change with 

age, and of course – unlike a face - ears do not smile! The force field transform of an ear, Figure 

3.33(a), is shown in Figure 3.33(b). Here, the averaging process is reflected in the reduction of the 

effects of hair. The transform itself has highlighted ear structures, especially the top of the ear and 

the lower  ‘keyhole’ (the inter-tragic notch). 
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(a) image of ear (b) magnitude of force field transform 

Figure 3.33 Illustrating the Force Field Transform 

 

The image shown is actually the magnitude of the force field. The transform itself is a vector 

operation, and includes direction [Hurley02]. The transform is expressed as the calculation of the 

force F  between two points at positions ir  and jr which is dependent on the value of a pixel at 

point ir  as 

    
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


  (3.52) 

which assumes that the point jr  is of unit “mass”. This is a directional force (which is why the 

inverse square law is expressed as the ratio of the difference to its magnitude cubed) and the 

magnitude and directional information has been exploited to determine an ear ‘signature’ by which 

people can be recognised. In application, Equation 3.52 can be used to define the coefficients of a 

template that is convolved with an image (implemented by the FFT to improve speed), as with 

many of the techniques that have been covered in this Chapter; an implementation is also given 

[Hurley02]. Note that this transform actually exposes low level features (the boundaries of the ears) 

which are the focus of the next Chapter. How we can determine shapes is a higher level process, 

and how the processes by which we infer or recognise identity from the low-and the high-level 

features will be covered in Chapter 12. 

 

3.5.8  Image Ray Transform 

The force field transform shows that there are other mathematical bases available for processing a 

whole image, as did the use of heat in the anisotropic diffusion operator. Another technique is called 

the Image Ray Transform (IRT) [Cummings11] and this uses an analogy to the propagation of light 

to transform an image to a new representation, with particular advantages. 
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(a) method of operation (b) result of transform 

Figure 3.34 Image Ray Transform Analysis in Retinopathy [Cummings11] 

 

As shown in Figure  3.34(a) the IRT operates in principle by initialising a torch in multiple positions 

and orientations and then tracing the path of the torch’s beam. This analogises an image as a matrix 

of glass blocks, where the image brightness is proportional to the refractive index of each block. 

Essentially, the technique uses Snell’s law which describes propagation of light. The angle of 

relection r of a ray of light is calculated using Snell’s law as  

 
2

1

sin

sin

i

r

n

n




  (3.53) 

where i is the angle of an incident ray, 1n is the refractive index of the incident medium and is the 

2n  refractive index of the exit medium. Whether or not a ray is refracted or reflected depends on 

the critical angle that is calculated from the ratio of the refractive indices. The refractive index is 

calculated from the image intensity i, given a chosen maximum refractive index maxn , as  

  max1 1
255
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i
n n

 
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 
 (3.54) 

There are many other refinements necessary for the technique, such as ray length, number of rays, 

and other parameters used in the refractive index calculation.  

A result of the IRT on the retina image of Figure 3.34(a) is shown in Figure 3.34(b). Essentially 

this shows the number of times beams crossed different points in the image. (It should be noted that 

diabetic retinopathy is of major interest in medicine, as it can show onset of diabetes. This image 

derives from the DRIVE dataset [Staal04] which is used within evaluation of techniques in this 

area.) In Figure 3.34(b), the transform has highlighted the vessels and not the optical disc (the bright 

part of the centre of the eye, where the vessels appear to converge).  This changes the image 

representation in a way combining feature extraction with filtering. 
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(a) tubular structure (b) circular structure (c) car 

Good results Poor result 

Figure 3.35 Applying the Image Ray Transform [Cummings11] 

 

By its nature, the IRT is suited to application in images that contain tubular or circular structures 

and the transform will emphasise (light is trapped in tubular structures, in a manner akin with optical 

fibres). This is shown in Figure 3.35(a) and (b) as well as a poor result in Figure 3.35(c). The poor 

result arises from an image where the two circular structures could be expected to be emphasised, 

but the resolution of the image is poor with respect to these two structures and the shadow of the 

car produces a stronger tubular structure, directing rays away from the wheels.  

No technique is a panacea, and that should never be expected. There is a wide variety of 

processing operators possible, many more than have been shown here and in application one 

chooses the most appropriate. We have described the major operators and compared their 

performance, though only for demonstration purposes on image quality improvement. We shall 

move to techniques that explicitly locate low level image structures in the next Chapter. Before that 

we shall move to a complemenary approach to the image processing that has been presented so far. 

3.6  Mathematical Morphology 

Mathematical morphology analyses images by using operators developed using set theory [Serra86, 

Soille13]. It was originally developed for binary images and was extended to include grey level 

data. The word morphology actually concerns shapes: in mathematical morphology we process 

images according to shape, by treating both as sets of points. In this way, morphological operators 

define local transformations that change pixel values that are represented as sets. The ways pixel 

values are changed is formalised by the definition of the hit or miss transformation.  

In the hit and miss transform, an object represented by a set X  is examined through a structural 

element represented by a set B . Different structuring elements are used to change the operations 

on the set X . The hit or miss transformation is defined as the point operator 

  c

xx XBXBxBX  21  (3.55) 
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3.7  Further Reading 

Many texts cover basic point and group operators in much detail, in particular some texts give many 

more examples, such as [Russ11], [Seul00] and there is a recent book intended to “introduce 

students to image processing and analysis” [Russ 2017]. Much material here is well established so 

the texts here are rather dated now, but note that basics never change – and there is always room 

for new techniques which offer improved performance. There is a relatively new text concentrating 

on image processing using Python [Chityala15]. Some of the more advanced texts include more 

coverage of low-level operators, such as Rosenfeld and Kak [Rosenfeld82] and Castleman 

[Castleman96]. There is MATLAB code for many of the low-level operations in this Chapter in 

[Gonzalez09]. For study of the effect of the median operator on image data, see [Bovik87]. Some 

techniques receive little treatment in the established literature, except for [Chan05] (with extensive 

coverage of noise filtering too). The Truncated Median Filter is covered again in Davies [Davies17]. 

Notwithstanding the discussion on more recent denoising operators at the end of Section 3.5.6, for 

further study of different statistical operators on ultrasound images, see [Evans96]. The concept of 

scale-space allows for considerably more refined analysis than is given here and we shall revisit it 

later. It was originally introduced by Witkin [Witkin83] and further developed by others including 

Koenderink [Koenderink84] (who also considers the heat equation). There is even series of 

conferences devoted to scale-space and morphology. 
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4  Low-Level Feature Extraction (including Edge Detection) 

4.1 Overview 

e shall define low-level features to be those basic features that can be extracted 

automatically from an image without any shape information (information about spatial 

relationships). As such, thresholding is actually a form of low-level feature extraction 

performed as a point operation. Naturally, all of these approaches can be used in high-

level feature extraction, where we find shapes in images. It is well known that we can recognise 

people from caricaturists’ portraits. That is the first low level feature we shall encounter. It is called 

edge detection and it aims to produce a line drawing, like Figure 4.1(b), something akin to a 

caricaturist’s sketch though without the exaggeration a caricaturist would imbue. There are very 

basic techniques and more advanced ones and we shall look at some of the most popular approaches. 

The first order detectors are equivalent to first order differentiation and, naturally, the second order 

edge detection operators are equivalent to a one-higher level of differentiation. An alternative form 

of edge detection is called phase congruency and we shall again see the frequency domain used to 

aid analysis, this time for low-level feature extraction. 

    

 (a) natural image  (b) edge detection (c) consecutive images of 

walking subject 

  

 

(d) (key) point detection (e) saliency  detection (f) motion detection 

Figure 4.1 Low-Level Feature Detection 

 

We shall also consider corner detection which can be thought of as detecting those points where 

lines bend very sharply with high curvature, such as the lizard’s head in Figures 4.1(a) and (b). 

These are another low-level features that again can be extracted automatically from the image. 

These are largely techniques for localised feature extraction, in this case the curvature Figure 4.1(d), 

and the more modern approaches extend to the detection of localised regions or patches of interest, 

Figure 4.1(e). Finally, we shall investigate a technique that describes motion, called optical flow. 

This is illustrated in Figures 4.1(c) and (f) with the optical flow from images of a walking man: the 

bits that are moving fastest are the brightest points, like the hands and the feet. All of these can 

provide a set of points, albeit points with different properties, but all are suitable for grouping for 

W 
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shape extraction. Consider a square box moving though a sequence of images. The edges are the 

perimeter of the box; the corners are the apices; the flow is how the box moves. All these can be 

collected together to find the moving box. We shall start with the edge detection techniques, with 

the first order operators which accords with the chronology of development. The first order 

techniques date back by more than 30 years. 

Main topic Sub topics Main points 

First order 

edge 

detection 

What is an edge and how we detect it. The 

equivalence of operators to first order 

differentiation and the insight this brings. 

The need for filtering and more 

sophisticated first order operators. 

Difference operation; Roberts Cross, 

Smoothing, Prewitt, Sobel, Canny. 

Basis of the operators and frequency 

domain analysis. 

Second 

order edge 

detection 

Relationship between first and second 

order differencing operations. The basis of 

a second order operator. The need to 

include filtering and better operations. 

Second order differencing; 

Laplacian, zero-crossing detection; 

Marr-Hildreth, Laplacian of 

Gaussian, Difference of Gaussians. 

Scale space. 

Other edge 

operators 

Alternative approaches and performance 

aspects. Comparing different operators. 

Other noise models; Spacek. Other 

edge models; Petrou and Susan. 

Phase 

congruency 

Phase for feature extraction; inverse 

Fourier transform;. Alternative form of 

edge and feature detection. 

Frequency domain analysis; 

detecting a range of features; 

photometric invariance, wavelets. 

Localised 

feature 

extraction 

Finding localised low-level features; 

extension from curvature to patches. 

Nature of curvature and computation  

from: edge information; by change in 

intensity; and by correlation. Motivation of 

patch detection and principles of modern 

approaches. Saliency and saliency 

operators. 

Planar curvature; corners. Curvature 

estimation by: change in edge 

direction; intensity change; Harris 

corner detector. Patch based 

detectors; scale space. SIFT, SURF, 

FAST, ORB, FREAK, Brightness 

Clustering. Saliency operators. 

context aware saliency. 

Optical 

flow 

Estimation 

Movement and the nature of optical flow. 

Estimating the optical flow by a 

differential approach. Need for other 

approaches (inc. matching regions). 

Detection by differencing. Optical 

flow; velocity; aperture problem; 

smoothness constraint. Differential 

approach; Horn and Schunk method; 

correlation; Extensions: Deepflow; 

Epicflow and acceleration. 

Evaluation of optical flow. 

Table 4.1 Overview of Chapter 4 
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4.2   Edge Detection  

4.2.1      First Order Edge Detection Operators 

4.2.1.1   Basic Operators 

Many approaches to image interpretation are based on edges, since analysis based on edge detection 

is insensitive to change in the overall illumination level. Edge detection highlights image contrast. 

Detecting contrast, which is difference in intensity, can emphasise the boundaries of features within 

an image, since this is where image contrast occurs. This is, naturally, how human vision can 

perceive the perimeter of an object, since the object is of different intensity to its surroundings. 

Essentially, the boundary of an object is a step-change in the intensity levels. The edge is at the 

position of the step change. To detect the edge position we can use first order differentiation since 

this emphasises change; first order differentiation gives no response when applied to signals that 

do not change. The first edge detection operators to be studied here are group operators which aim 

to deliver an output which approximates the result of first order differentiation.  

A change in intensity can be revealed by differencing adjacent points. Differencing horizontally 

adjacent points will detect vertical changes in intensity and is often called a horizontal edge-

detector by virtue of its action. A horizontal operator will not show up horizontal changes in 

intensity since the difference is zero. (This is the form of edge detection used within the anisotropic 

diffusion smoothing operator in the previous Chapter.) When applied to an image P the action of 

the horizontal edge-detector forms the difference between two horizontally-adjacent points, as such 

detecting the vertical edges, Ex, as: 

 
, , 1, 1, 1; 1,x y x y x y x N y N     Ex P P  (4.1) 

  

(a) original image (b) vertical edges, Equation 4.1 

  

(c) horizontal edges, Equation 4.2 (d) all edges, Equation 4.4 

Figure 4.2 First Order Edge Detection 

 

In order to detect horizontal edges we need a vertical edge-detector which differences vertically 

adjacent points. This will determine horizontal intensity changes, but not vertical ones so the 

vertical edge-detector detects the horizontal edges, Ey, according to: 
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, , , 1 1, ; 1, 1x y x y x y x N y N     Ey P P  (4.2) 

Figures 4.2(b) and (c) show the application of the vertical and horizontal operators to the 

synthesised image of the square in Figure 4.2(a). The left hand vertical edge in Figure 4.2(b) appears 

to be beside the square by virtue of the forward differencing process. Likewise, the upper edge in 

Figure 4.2(c) appears above the original square. 

The combination of the horizontal and vertical detectors defines an operator E that can detect 

vertical and horizontal edges together. That is 

 
, , 1, , , 1 , 1, 1x y x y x y x y x y x y N       E P P P P  (4.3) 

which gives: 

 
, , 1, , 12 , 1, 1x y x y x y x y x y N       E P P P  (4.4) 

Equation 4.4 gives the coefficients of a differencing template which can be convolved with an 

image to detect all the edge points, such as those shown in Figure 4.2(d). As in the previous Chapter, 

the current point of a template’s operation (the position of the point we are computing a new value 

for) is shaded. The template shows only the weighting coefficients and not the modulus operation. 

Note that the bright point in the upper left corner of the edges of the square in Figure 4.2(d) is much 

brighter than the other points. This is because it is the only point to be detected as an edge by both 

the vertical and the horizontal operators and is therefore much brighter than the other edge points. 

In contrast, the lower right corner point is detected by neither operator and so does not appear in 

the final image. 

 
        

   2 -1    

   -1 0    
        

Figure 4.3 Template for First Order Difference 

The template in Figure 4.3 is convolved with the image to detect edges. The direct 

implementation of this operator, i.e. using Equation 4.4 rather than template convolution, is given 

in Code 4.1. Naturally, template convolution could be used, but it is unnecessarily complex in this 

case. 

 

function edge = basic_difference(image) 

 

for x = 1:cols-2 %address all columns except border 
  for y = 1:rows-2 %address all rows except border 
    edge(y,x)=abs(2*image(y,x)-image(y+1,x)-image(y,x+1)); % Eq. 4.4 
  end 
end 

Code 4.1 First Order Edge Detection 

Uniform thresholding (Section 3.3.4) can be used to select the brightest edge points. The 

threshold level controls the number of selected points; too high a level can select too few points, 

whereas too low a level can select too much noise. Often, the threshold level is chosen by experience 

or by experiment, but it can be determined automatically by considering edge data [Venkatesh95], 

or empirically [Haddon88]. For the moment, let us concentrate on the development of edge 

detection operators, rather than on their application.  
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4.2.1.2   Analysis of the Basic Operators 

Taylor series analysis reveals that differencing adjacent points provides an estimate of the first 

order derivative at a point. If the difference is taken between points separated by x  then by Taylor 

expansion for ( )f x x   we obtain: 

 
2

3( ) ( ) ( ) ( ) ( )
2!

x
f x x f x x f x f x O x


            (4.5) 

By rearrangement, the first order derivative ( )f x is: 

 
( ) ( )

( ) ( )
f x x f x

f x O x
x

 
   


 (4.6) 

This shows that the difference between adjacent points is an estimate of the first order derivative, 

with error ( )O x . This error depends on the size of the interval x  and on the complexity of the 

curve. When x  is large this error can be significant. The error is also large when the high order 

derivatives take large values. In practice, the close sampling of image pixels and the reduced high 

frequency content make this approximation adequate. However, the error can be reduced by spacing 

the differenced points by one pixel. This is equivalent to computing the first order difference 

delivered by Equation 4.1 at two adjacent points, as a new horizontal difference Exx where 

 
, 1, , 1, , , 1, 1, 1,x y x y x y x y x y x y x y x y x y           Exx Ex Ex P P P P P P  (4.7) 

This is equivalent to incorporating spacing to detect the edges Exx by: 

 
, 1, 1, 2, 1; 1,x y x y x y x N y N      Exx P P  (4.8) 

To analyse this, again by Taylor series, we expand ( )f x x  as: 

 
2

3( ) ( ) ( ) ( ) ( )
2!

x
f x x f x x f x f x O x


           (4.9) 

By differencing Equation 4.9 from Equation 4.5, we obtain the first order derivative as: 

 2( ) ( )
( ) ( )

2

f x x f x x
f x O x

x

   
   


 (4.10) 

Equation 4.10 suggests that the estimate of the first order difference is now the difference between 

points separated by one pixel, with error
2( )O x . If 1x  , this error is clearly smaller than the 

error associated with differencing adjacent pixels, in Equation 4.6. Again, averaging has reduced 

noise, or error. The template for a horizontal edge-detection operator is given in Figure 4.4(a).This 

template gives the vertical edges detected at its centre pixel. A transposed version of the template 

gives a vertical edge-detection operator, Figure 4.4(b). 
         

      1   

 1 0 -1   0   

      -1   

  (a) Mx    (b) My   

Figure 4.4 Templates for Improved First Order Difference 

The Roberts cross operator [Roberts65] was one of the earliest edge detection operators. It 

implements a version of basic first order edge detection and uses two templates which difference 

pixel values in a diagonal manner, as opposed to along the axes’ directions. The two templates are 

called M+ and M- and are given in Figure 4.5.  
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 +1 0   0 +1  

 0 -1   -1 0  

 (a) M-   (b) M+  

Figure 4.5 Templates for Roberts Cross Operator 

In implementation, the maximum value delivered by application of these templates is stored as 

the value of the edge at that point. The edge point Ex,y is then the maximum of the two values 

derived by convolving the two templates at an image point Px,y: 

  , , ,max M , M , 1, 1x y x y x y x y N      E P P  (4.11) 

 

 

 
 

 
 

 
 

(a) M- (b) M+ (c) M 

Figure 4.6 Applying the Roberts Cross Operator 

The application of the Roberts cross operator to the image of the square is shown in Figure 4.6. 

The two templates provide the results in Figure 4.6(a) and (b) and the result delivered by the Roberts 

operator is shown in Figure 4.6(c). Note that the corners of the square now appear in the edge image, 

by virtue of the diagonal differencing action, whereas they were less apparent in Figure 4.2(d) 

(where the top left corner did not appear). 

An alternative to taking the maximum is to simply add the results of the two templates together 

to combine horizontal and vertical edges. There are of course more varieties of edges and it is often 

better to consider the two templates as providing components of an edge vector: the strength of the 

edge along the horizontal and vertical axes. These give components of a vector and can be added 

in a vectorial manner (which is perhaps more usual for the Roberts operator). The edge magnitude 

is the length of the vector, the edge direction is the vector’s orientation, as shown in Figure 4.7. 
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Figure 4.7 Edge Detection in Vectorial Format 

4.2.1.3   Prewitt Edge Detection Operator 

Edge detection is akin to differentiation. Since it detects change it is bound to respond to noise, as 

well as to step-like changes in image intensity (its frequency domain analogue is high-pass filtering 

as illustrated in Figure 2.30(c)). It is therefore prudent to incorporate averaging within the edge 

detection process. We can then extend the vertical template, Mx, along three rows, and the 

horizontal template, My, along three columns. These give the Prewitt edge detection operator 

[Prewitt66] that consists of two templates, Figure 4.8: 

 
          

 1 0 -1   1 1 1  

 1 0 -1   0 0 0  

 1 0 -1   -1 -1 -1  

  (a) Mx     (b) My   

Figure 4.8 Templates for Prewitt Operator 

 

This gives two results: the rate of change of brightness along each axis. As such, this is the vector 

illustrated in Figure 4.7: the  edge magnitude, M, is the length of the vector and the edge direction, 

, is the angle of the vector: 

 2 2M( , ) Mx( , ) My( , )x y x y x y   (4.12) 

 1 My( , )
θ( , ) tan

Mx( , )

x y
x y

x y

  
  

 
 (4.13) 

 

The signs of Mx and My can be used to determine the appropriate quadrant for the edge direction. 

An implementation of the Prewitt operator is given in Code 4.2. In this code, both templates operate 

on a 3 3  region. Again, template convolution could be used to implement this operator, but (as 

with direct averaging and basic first order edge detection) it is less suited to small templates.  
 

for x,y in itertools.product(range(0, width-1), range(0, height-1)): 

    mX,mY = 0.0, 0.0 

    for c in range(-1, 2): 

        mX += float(inputImage[y - 1, x + c]) - float(inputImage[y + 1, x + c]) 

        mY += float(inputImage[y + c, x - 1]) - float(inputImage[y + c, x + 1]) 

     

    outputMagnitude[y,x] = math.sqrt(mX * mX + mY * mY)    
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    outputDirection[y,x] = math.atan2(mY, mX)     

Code 4.2 Implementing the Prewitt Operator 

When applied to the image of the square, Figure 4.9(a), we obtain the edge magnitude and 

direction, Figures 4.9(b) and (d), respectively. The edge direction in Figure 4.9(d) is shown as an 

image as the numbers are rather uninformative. Though the regions of edge points are wider due to 

the operator’s averaging properties, the edge data is clearer than the earlier first order operator, 

highlighting the regions where intensity changed in a more reliable fashion (compare for example, 

the lower left corner of the square which was not revealed earlier). The direction is less clear in an 

image format and is better exposed by Matlab’s quiver format in Figure 4.9(c). In vector format, 

the edge direction data is clearly less well defined at the corners of the square (as expected, since 

the first order derivative is discontinuous at these points). Again, template convolution could be 

used to implement this operator, but (as with direct averaging and basic first order edge detection) 

it is less suited to small templates.  

 

  

(a) original image (b) edge magnitude 

  

(c) edges in vector format (d) edge direction 

Figure 4.9 Applying the Prewitt Operator 

4.2.1.4   Sobel Edge Detection Operator 

When the weight at the central pixels, for both Prewitt templates, is doubled, this gives the famous 

Sobel edge detection operator which, again, consists of two templates to determine the edge in 

vector form. The Sobel operator was the most popular edge-detection operator until the 

development of edge detection techniques with a theoretical basis. It proved popular because it 

gave, overall, a better performance than other contemporaneous edge-detection operators, such as 

the Prewitt operator. The templates for the Sobel operator can be found in Figure 4.10. 

          

 1 0 -1   1 2 1  



Low-Level Feature Extraction 

 133 

 2 0 -2   0 0 0  

 1 0 -1   -1 -2 -1  

  (a) Mx     (b) My   

Figure 4.10 Templates for Sobel Operator 

The implementation of these masks is very similar to the implementation of the Prewitt operator, 

Code 4.2, again operating on a 3 3  sub-picture. However, all template-based techniques can be 

larger than 5 5  so, as with any group operator, there is a 7 7  Sobel and so on. The virtue of a 

larger edge-detection template is that it involves more smoothing to reduce noise but edge blurring 

becomes a great problem. The estimate of edge direction can be improved with more smoothing 

since it is particularly sensitive to noise. So how do we form larger templates, say for 5 5  or 7 7  ? 

Few textbooks state the original Sobel derivation, but it has been attributed [Heath97] as originating 

from a PhD thesis [Sobel70]. Unfortunately a theoretical basis, that can be used to calculate the 

coefficients of larger templates, is rarely given. One approach to a theoretical basis is to consider 

the optimal forms of averaging and of differencing. Gaussian averaging has already been stated to 

give optimal averaging. The Binomial Expansion gives the integer coefficients of a series that, in 

the limit, approximates the normal distribution. Pascal’s triangle gives sets of coefficients for a 

smoothing operator which, in the limit, approach the coefficients of a Gaussian smoothing operator. 

Pascal’s triangle is then: 

Window size               

  2      1  1         

  3     1  2  1        

  4    1  3  3  1       

  5   1  4  6  4  1      

This gives the (un-normalised) coefficients of an optimal discrete smoothing operator (it is 

essentially a Gaussian operator with integer coefficients). The rows give the coefficients for 

increasing template, or window, size. The coefficients of smoothing within the Sobel operator 

Figures 4.10 are those for a window size of 3. In Python, the template coefficients can be calculated 

as shown in Code 4.3. The code uses the array smooth to store a pair of 2D templates that contain 

the coefficients in x and y directions.  

The differencing coefficients are given by Pascal’s triangle for subtraction: 

Window size               

  2      1  -1         

  3     1  0  -1        

  4    1  1  -1  -1       

  5   1  2  0  -2  -1      

This can be implemented by subtracting the templates derived from two adjacent Pascal expansions 

from a smaller window size. In Code 4.3 the arrays pascal1 and pascal2 have the expansions for 

the Pascal triangle and a shifted version. The code uses the factorial definition of the Pascal 

coefficients to compute both expansions, but the second one can be also computed by shifting the 

values of the first array. Note that each Pascal expansion has a template for vertical and horizontal 

direction. Figure 4.11 shows the coefficients computed with the implementation for a 7×7 window 

size. 

The differencing template is then given by the difference between two Pascal expansions, as shown 

in Code 4.3. The array Sobel stores the result of the difference between the two shifted templates. 

The result is multiplied by the smoothing array. Thus, the result gives the coefficients of optimal 

differencing and optimal smoothing. This general form of the Sobel operator combines optimal 

smoothing along one axis, with optimal differencing along the other.  
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for x,y in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

         

    # Smooth 

    smooth[y,x,0] = factorial(kernelSize - 1) /                           \ 

                    (factorial(kernelSize - 1 - x) * factorial(x)) 

    smooth[y,x,1] = factorial(kernelSize - 1) /                           \ 

                    (factorial(kernelSize - 1 - y) * factorial(y)) 

     

    # Pascal  

    if (kernelSize - 2 - x >= 0): 

        pascal1[y,x,0] = factorial(kernelSize - 2) /                      \ 

                         (factorial(kernelSize - 2 - x) * factorial(x)) 

     

    if (kernelSize - 2 - y >= 0):     

        pascal1[y,x,1] = factorial(kernelSize - 2) /                      \ 

                         (factorial(kernelSize - 2 - y) * factorial(y)) 

         

    # Pascal shift to the right 

    xp = x - 1 

    if (kernelSize - 2 - xp >= 0 and xp >= 0): 

        pascal2[y,x,0] = factorial(kernelSize - 2) /                      \ 

                         (factorial(kernelSize - 2 - xp) * factorial(xp)) 

         

    yp = y - 1 

    if (kernelSize - 2 - yp >= 0 and yp >= 0): 

        pascal2[y,x,1] = factorial(kernelSize - 2) /                      \ 

                         (factorial(kernelSize - 2 - yp) * factorial(yp)) 

         

    # Sobel     

    sobel[y,x,0] = smooth[y,x,1] * (pascal1[y,x,0] - pascal2[y,x,0]) 

    sobel[y,x,1] = smooth[y,x,0] * (pascal1[y,x,1] - pascal2[y,x,1])    

Code 4.3 Creating Sobel Kernels 

Figure 4.11 shows the full process used to generate the 7×7 Sobel kernels. Each column shows the 

template computed with Code 4.3. Figure 4.11(a) shows the smoothing template. Figures 4.11(b-c) 

show the Pascal and shifted Pascal templates. Figure 4.11(d) shows the final kernel.  

    

(a) smooth 7×7 (b) Pascal 7×7 (c) shift  7×7 (d) Sobel kernel 7×7 

Figure 4.11 Creating Templates for the Sobel Operator 

The Sobel templates can be applied by operating on a matrix of dimension equal to the window 

size, from which edge magnitude and gradient are calculated. The implementation in Code 4.4 

convolves the generalised Sobel templates (of size chosen to be kernelize) with the image 

supplied as argument, to give an output which contains the images of edge magnitude and direction. 

The kernel is created according to the implementation in Code 4.3. 

# Create Kernel  

sobelX, sobelY = createSobelKernel(kernelSize) 

 

# The center of the kernel 

kernelCentre = (kernelSize - 1) / 2 

     

# Convolution with two kernels     

for x,y in itertools.product(range(0, width), range(0, height)): 
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    mX, wX, mY, wY = 0.0, 0.0, 0.0, 0.0 

    for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

        posY = y + wy - kernelCentre 

        posX = x + wx - kernelCentre  

             

        if posY > -1 and posY <  height and  posX > -1 and posX <  width: 

            mX += float(inputImage[posY,posX]) * sobelX[wy, wx] 

            wX += sobelX[wy, wx] 

             

            mY += float(inputImage[posY,posX]) * sobelY[wy, wx] 

            wY += sobelY[wy, wx] 

         

    if wX > 0:  mX = mX / wX   

    if wY > 0:  mY = mY / wY       

             

    outputMagnitude[y,x] = math.sqrt(mX * mX + mY * mY)    

    outputDirection[y,x] = math.atan2(mX, -mY)     

Code 4.4 Generalised Sobel Operator 

The results of applying the 5 5  Sobel operator can be seen in Figure 4.12. The original image 

Figure 4.12(a) has many edges of the leaves and around the lizard’s eye. This is shown in the edge 

magnitude image, Figure 4.12(b). When this is thresholded at a suitable value, many edge points 

are found, as shown in Figure 4.12(c). Note that in areas of the image where the brightness remains 

fairly constant, such as within the blades of the leaves, there is little change which is reflected by 

low edge magnitude and few points in the thresholded data. The example in the second row in 

Figure 4.12  illustrates how edge magnitude and direction are well defined in image regions with 

high contrast.  

   
 

(a) original image (b) magnitude (c) thresholded  (d) direction  

    

(e) original image (f) magnitude (g) thresholded (h) direction 

Figure 4.12 Applying the Sobel Operator 

The Sobel edge direction data can be arranged to point in different ways, as can the direction 

provided by the Prewitt operator. If the templates are inverted to be of the form shown in Figure 

4.13, the edge direction will be inverted around both axes. If only one of the templates is inverted, 

the measured edge direction will be inverted about the chosen axis. 

          

 -1 0 1   -1 -2 -1  

 -2 0 2   0 0 0  

 -1 0 1   1 2 1  
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(a) Mx (b) My 

Figure 4.13 Inverted Templates for Sobel Operator 

This gives four possible directions for measurement of the edge direction provided by the Sobel 

operator, two of which (for the templates of Figures 4.10 and 4.13) are illustrated in Figures 4.14(a) 

and (b), respectively, where inverting the Mx template does not highlight discontinuity at the 

corners. (The edge magnitude of the Sobel applied to the square is not shown, but is similar to that 

derived by application of the Prewitt operator, Figure 4.9(b)). By swapping the Sobel templates, 

the measured edge direction can be arranged to be normal to the edge itself (as opposed to tangential 

data along the edge). This is illustrated in Figures 4.14(c) and (d) for swapped versions of the 

templates given in Figures 4.10 and 4.13, respectively. The rearrangement can lead to simplicity in 

algorithm construction when finding shapes, as to be shown later. Any algorithm which uses edge 

direction for finding shapes must know precisely which arrangement has been used, since the edge 

direction can be used to speed algorithm performance, but it must map precisely to the expected 

image data if used in that way. 

 

  

(a) Mx, My (b) Mx, My 

  

(c) My, Mx (d) -My, -Mx 

Figure 4.14 Alternative Arrangements of Edge Direction 

 

Detecting edges by template convolution again has a frequency domain interpretation. The 

magnitude of the Fourier transform of a 7 7  Sobel template of  Figure 4.11 is given in Figure 

4.15. The Fourier transform is given in relief in Figure 4.15(a). The template is for horizontal 

differencing action, Mx, In Figure 4.15(a) the vertical frequencies are selected from a region near 

the origin (low-pass filtering – consistent with averaging over five lines), whereas the horizontal 

frequencies are selected away from the origin (high-pass – consistent with the differencing action). 

This highlights the action of the Sobel operator: to combine smoothing along one axis with 

differencing along the other. In Figure 4.15(a), the smoothing is of vertical spatial frequencies 

whilst the differencing is of horizontal spatial frequencies. 
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(a) magnitude of discrete version (b) magnitude of continuous version 

Figure 4.15 Fourier Transform of the Sobel Operator 

 

An alternative frequency domain analysis of the Sobel can be derived via the z-transform 

operator. This is more the domain of signal processing courses in electronic and electrical 

engineering, and is included here for completeness and for linkage with signal processing. 

Essentially z-1 is a unit time-step delay operator, so z can be thought of a unit (time-step) advance, 

so f(t-) = z-1f(t) and f(t+) = z f(t) where  is the sampling interval. Given that we have two spatial 

axes x and y we can then express the Sobel operator of Figure 4.13(a) using delay and advance via 

the z-transform notation along the two axes as 
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 (4.14) 

including zeros for the null template elements. Given that there is a standard substitution (by 

conformal mapping, evaluated along the frequency axis) 
1 j tz e    to transform from the time (z) 

domain to the frequency domain ( ), then we have 
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 (4.15) 

where the transform Sobel  is a function of spatial frequency
x and 

y , along the x and the y axes. 

This confirms rather nicely the separation between smoothing along the y axis (the cos function in 

the first part of Equation 4.15, low-pass) and differencing along the other – here by differencing 

(the sin function, high-pass) along the x axis. This provides the continuous form of the magnitude 

of the transform shown in Figure 4.15(b).  
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4.2.1.5   The Canny Edge Detector  

The Canny edge detection operator [Canny86] is perhaps the most popular edge detection 

technique at present. It was formulated with three main objectives: 

1. optimal detection with no spurious responses; 

2. good localisation with minimal distance between detected and true edge position; and 

3. single response to eliminate multiple responses to a single edge. 

The first requirement aims to reduce the response to noise. This can be effected by optimal 

smoothing; Canny was the first to demonstrate that Gaussian filtering is optimal for edge detection 

(within his criteria). The second criterion aims for accuracy: edges are to be detected, in the right 

place. This can be achieved by a process of non-maximum suppression (which is equivalent to peak 

detection). Non-maximum suppression retains only those points at the top of a ridge of edge data, 

whilst suppressing all others. This results in thinning: the output of non-maximum suppression is 

thin lines of edge points, in the right place. The third constraint concerns location of a single edge 

point in response to a change in brightness. This is because more than one edge can be denoted to 

be present, consistent with the output obtained by earlier edge operators.  

Canny showed that the Gaussian operator was optimal for image smoothing. Recalling that the 

Gaussian operator g(x,y,) is given by: 
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By differentiation, for unit vectors Ux = [1,0] and Uy = [0,1] along the co-ordinate axes, we obtain: 
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 (4.17) 

Equation 4.17 gives a way to calculate the coefficients of a derivative of Gaussian template that 

combines first-order differentiation with Gaussian smoothing. This is a smoothed image, and so the 

edge will be a ridge of data. In order to mark an edge at the correct point (and to reduce multiple 

responses), we can convolve an image with an operator which gives the first derivative in a direction 

normal to the edge. The maximum of this function should be the peak of the edge data, where the 

gradient in the original image is sharpest, and hence the location of the edge. Accordingly, we seek 

an operator, Gn, which is a first derivative of a Gaussian function g in the direction of the normal, 

n : 

 n

g
G



 


n

 (4.18) 

where n  can be estimated from the first order derivative of the Gaussian function g convolved 

with the image P, and scaled appropriately as: 
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The location of the true edge point is then at the maximum point of Gn convolved with the image. 

This maximum is when the differential (along n ) is zero: 

 
( )

0nG

 




P

n
 (4.20) 
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By substitution of Equation 4.18 in Equation 4.20, 
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 (4.21) 

Equation 4.21 provides the basis for an operator which meets one of Canny’s criteria, namely 

that edges should be detected in the correct place. This is non-maximum suppression, which is 

equivalent to retaining peaks (and thus equivalent to differentiation perpendicular to the edge), 

which thins the response of the edge-detection operator to give edge points which are in the right 

place, without multiple response and with minimal response to noise. However, it is virtually 

impossible to achieve an exact implementation of Canny given the requirement to estimate the 

normal direction.  

 

    

(a) Gaussian 

smoothing 

(b) Sobel edge 

detection  

(c) non-maximum 

suppression 

(d) hysteresis 

thresholding 

Figure 4.16 Stages in Canny Edge Detection 

 

A common approximation is, as illustrated in Figure 4.16: 

1. use Gaussian smoothing (as in Section 3.4.5), Figure 4.16(a); 

2. use the Sobel operator, Figure 4.16(b); 

3. use non-maximum suppression, Figure 4.16(c); and  

4. threshold with hysteresis to connect edge points, Figure 4.16(d). 

Note that the first two stages can be combined using a version of Equation 4.17, but are separated 

here so that all stages in the edge-detection process can be shown clearly. An alternative 

implementation of Canny’s approach [Deriche87] used Canny’s criteria to develop two-

dimensional recursive filters, claiming performance and implementation advantage over the 

approximation here. 
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Figure 4.17 Interpolation in Non-Maximum Suppression 

 

 Non-maximum suppression essentially locates the highest points in the edge magnitude data. This 

is performed by using edge direction information, to check that points are at the peak of a ridge. 

Given a 3 3  region, a point is at a maximum if the gradient at either side of it is less than the 

gradient at the point. This implies that we need values of gradient along a line which is normal to 

the edge at a point. This is illustrated in Figure 4.17, which shows the neighbouring points to the 

point of interest, Px,y, the edge direction at Px,y  and the normal to the edge direction at Px,y. The 

point Px,y  is to be marked as maximum if its gradient, M(x,y) exceeds the gradient at points 1 and 

2, M1 and M2, respectively. Since we have a discrete neighbourhood, M1 and M2 need to be 

interpolated, First order interpolation using Mx and My at Px,y, and the values of Mx and My for 

the neighbours gives: 

 
1

My Mx-My
M( 1, 1) M( , 1)

Mx Mx
M x y x y      (4.22) 

and 

 
2

My Mx-My
M( 1, 1) M( , 1)

Mx Mx
M x y x y      (4.23) 

The point Px,y is then marked as a maximum if M(x,y) exceeds both M1 and M2., otherwise it is 

set to zero. In this manner the peaks of the ridges of edge magnitude data are retained, whilst those 

not at the peak are set to zero. Code 4.5 illustrates the implementation of non-maximum 

suppression. It takes as inputs the images magnitude and angle that were obtained by applying 

the Sobel edge detector.  The code iterates for all pixel positions (x,y)whose magnitude is bigger 

than a minimum threshold. Any point lower than this threshold cannot be an edge. The variable 

normalAngle stores the angle perpendicular to the edge. This angle is used to obtain the two 

pixels defined by the variables (x1,y1)  and (x2,y2).  These points are used to compute M1 

and M2. If the magnitude in the point (x,y)is greater than these values, then we consider that the 

point is a maximum. The resulting maxImage will be zero if the point is not maximum and the 

value of the magnitude otherwise. 

 
border = (kernelSize -1)/2 
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for x,y in itertools.product(range(border, width-border),                   \ 

                             range(border, height-border)): 

     

    # Only potential edges can be maximum 

    if magnitude[y,x] > lowerT:        

        # The normal angle is perpendicular to the edge angle 

        normalAngle = angle[y,x] - pi / 2.0 

         

        # Make sure the angle is between 0 and pi  

        while normalAngle < 0:   normalAngle += pi 

        while normalAngle > pi:  normalAngle -= pi 

         

        # Angle defining the first point 

        baseAngle = int( 4 * normalAngle / pi ) * (pi / 4.0) 

         

        # Integer delta positions for interpolation 

        # We use -y since the image origin is in top corner 

        x1, y1 = int(round(cos(baseAngle))), -int(round(sin(baseAngle))) 

        x2, y2 = int(round(cos(baseAngle + pi / 4.0))),                     \ 

                -int(round(sin(baseAngle + pi / 4.0))) 

         

        # How far we are from (x1,y1).  

        # Maximum difference is pi / 4.0, so we multiply by 2 

        w = cos(2.0*(normalAngle - baseAngle)) 

         

        # Point to interpolate 

        M1 = w * magnitude[y+y1,x+x1] + (1.0 - w) * magnitude[y+y2,x+x2] 

         

        # Point to interpolate for pixels in the other side of the edge 

        M2 = w * magnitude[y-y1,x-x1] + (1.0 - w) * magnitude[y-y2,x-x2] 

          

        # Determine if it is a maximum. If so make sure it will be preserved  

        if magnitude[y,x] > M1 and magnitude[y,x] > M2: 

            maxImage[y,x] = magnitude[y,x] 

Code 4.5 Non-Maximum Suppression 

The result of non-maximum suppression is used in the hysteresis thresholding process. As 

illustrated in Figure 4.18, this process delineates the borders by choosing the maximum pixels. The 

transfer function associated with hysteresis thresholding is shown in Figure 4.18. Points are set to 

white (edges) once the upper threshold is exceeded and set to black when the lower threshold is 

reached. The arrows reflect possible movement: there is only one way to change from black to 

white and vice versa. 

 

Figure 4.18 Hysteresis Thresholding Transfer Function 
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The application of non-maximum suppression and hysteresis thresholding is illustrated in Figure 

4.19. This contains a ridge of edge data, the edge magnitude. The action of non-maximum 

suppression is to select the points along the top of the ridge. Given that the top of the ridge initially 

exceeds the upper threshold, the thresholded output is set to white until the peak of the ridge falls 

beneath the lower threshold. The thresholded output is then set to black until the peak of the ridge 

exceeds the upper switching threshold. 

 

 

Figure 4.19 Action of Non-Maximum Suppression and Hysteresis Thresholding 

 

Hysteresis thresholding requires two thresholds: an upper and a lower threshold. The process starts 

when an edge point from non-maximum suppression is found to exceed the upper threshold. This 

is labelled as an edge point (usually white, with a value 255) and forms the first point of a line of 

edge points. The neighbours of the point are then searched to determine whether or not they exceed 

the lower threshold, as in Figure 4.20. Any neighbour that exceeds the lower threshold is labelled 

as an edge point and its neighbours are then searched to determine whether or not they exceed the 

lower threshold. In this manner, the first edge point found (the one that exceeded the upper 

threshold) becomes a seed point for a search. Its neighbours, in turn, become seed points if they 

exceed the lower threshold, and so the search extends, along branches arising from neighbours that 

exceeded the lower threshold. For each branch, the search terminates at points that have no 

neighbours above the lower threshold. 

       

  lower  lower  lower    

  lower  seed upper  lower    

  lower  lower  lower    

       

Figure 4.20 Neighbourhood Search for Hysteresis Thresholding 

 

The implementation of hysteresis thresholding clearly requires recursion to delineate the edges by 

repeatedly selecting the neighbours of pixels that have been labelled as edges. Having found the 
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initial seed point, it is set to white and its neighbours are searched. Code 4.6  illustrates an 

implementation of this process. First, the pixels in the edge image are labelled, according to the 

values of the two thresholds, as edges (with a value of 255), no edges (with a value of 0) or as points 

that may be edges (with a value of 128). The code visits all pixels to find initial seeds. For each 

seed found, the code looks for the neighbours that exceed the lower threshold. These neighbours 

are labelled as edges and stored in the list potentialEdges. Recursion is implemented by 

looking for edges in the neighbours of each element in the list. That is, the code uses the list to keep 

the edges grown from the seed.  

 

# Divide pixels as edges, no edges and unassigned  

for x,y in itertools.product(range(1, width-1), range(1, height-1)): 

    # These are edges 

    if maxImage[y,x] > upperT:   edges[y,x] = 255 

    # These are pixels that we do not want as edges    

    if maxImage[y,x] < lowerT:   edges[y,x] = 0 

    # These may be edges     

    if maxImage[y,x] > lowerT and maxImage[y,x] <= upperT: 

        edges[y,x] = 128 

         

# Show double threshold image 

showImageF(edges) 

 

# Resolve the potential edges 

for x,y in itertools.product(range(1, width-1), range(1, height-1)): 

    # For each edge 

    if edges[y,x] == 255: 

         

        # Examine neighbors 

        potentialEdges = [ ] 

        for wx,wy in itertools.product(range(-windowDelta, windowDelta+1),      \ 

                                       range(-windowDelta, windowDelta+1)):               

            # It becomes an edge 

            if edges[y+wy,x+wx] == 128: 

                edges[y+wy,x+wx] = 255 

                potentialEdges.append((y+wy,x+wx)) 

         

        # Look into new edges 

        while len(potentialEdges) > 0: 

            # Take element from potential edges 

            y, x = (potentialEdges[0])[0],  (potentialEdges[0])[1] 

            potentialEdges = potentialEdges[1:] 

             

            # Examine neighbor 

            for wx,wy in itertools.product(range(-windowDelta, windowDelta+1),    \ 

                                           range(-windowDelta, windowDelta+1)):    

                    # It becomes an edge 

                    if edges[y+wy,x+wx] == 128: 

                        edges[y+wy,x+wx] = 255 

                        potentialEdges.append((y+wy,x+wx)) 

         

# Clean up remaining potential edges                             

for x,y in itertools.product(range(1, width-1), range(1, height-1)): 

    if edges[y,x] == 128:   edges[y,x] = 0 

Code 4.6 Hysteresis Thresholding Process 

A comparison between uniform thresholding and hysteresis thresholding is shown in Figure 

4.21. Figure 4.21(a) shows the edges for dual thresholding of a Sobel edge detected image. This 

image shows edges with an upper threshold set to 0.4 and a lower threshold of 0.1 of the normalised 

edge magnitude. Edges larger than the lower threshold are shown in grey and edges larger than the 

upper threshold in white. This example shows that it is difficult to choose a single threshold that 

characterises adequately the edges in the image. Figure 4.21(b) and (c) show the result of uniform 
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thresholding with these two thresholds. Notice that uniform thresholding can select too few points 

if the threshold is too high or too many if it is too low. Figure 4.21(d) shows that Hysteresis 

thresholding naturally selects all the points in Figure 4.21(b) and some of those in Figure 4.21(c), 

those connected to the points in Figure 4.21(b). Hysteresis thresholding therefore has an ability to 

detect major features of interest in the edge image, in an improved manner to uniform thresholding.  

  

(a) dual thresholding, upper 

level = 0.4, lower level = 0.1 
(b) uniform thresholding, level = 0.4  

  

(c) uniform thresholding, level = 0.1 (d) hysteresis thresholding, upper level = 0.4, 

lower level = 0.1  

Figure 4.21 Comparing Hysteresis Thresholding with Uniform Thresholding 

The action of the Canny operator is shown in Figure 4.22, in comparison with the result of the 

Sobel operator. Figure 4.22(a) is the original image of a face, Figure 4.22(b) is the result of the 

Canny operator (using a 5 5  Gaussian operator with 1.0   and with upper and lower thresholds 

set appropriately) and Figure 4.22(c) is the result of a 3 3  Sobel operator with uniform 

thresholding. The retention of major detail by the Canny operator is very clear; the edges are thin 

and complete in Figure 4.22(b) whereas they are blurred and less complete in Figure 4.22(c). Closer 

inspection of the lizard’s eye shows greater detail too.  
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(a) original image (b) Canny (c) Sobel 

   

(d) detail of (a) (e) detail of (b) (f) detail of (c) 

Figure 4.22 Comparing Canny with Sobel 

 

4.2.2 Second Order Edge Detection Operators 

4.2.2.1   Motivation  

First order edge detection is based on the premise that differentiation highlights change; image 

intensity changes in the region of a feature boundary. The process is illustrated in Figure 4.23 where 

there is a cross-section through image data which is an edge. The result of first order edge detection,

( ) d df x f x  , is a peak where the rate of change of the original signal, f(x), is greatest. There are 

of course higher order derivatives; applied to the same cross-section of data, the second order 

derivative, 
2 2( ) d df x f x  , is greatest where the rate of change of the signal is greatest and zero 

when the rate of change is constant. The rate of change is constant at the peak of the first order 

derivative. This is where there is a zero-crossing in the second order derivative, where it changes 

sign. Accordingly, an alternative to first order differentiation is to apply second order differentiation 

and then find zero-crossings in the second order information. 

 

 

Figure 4.23 First and Second Order Edge Detection 
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4.2.2.2   Basic Operators: The Laplacian  

The Laplacian operator is a template which implements second order differencing. The second 

order differential can be approximated by the difference between two adjacent first order 

differences:  

 ( ) ( ) ( 1)f x f x f x      (4.24) 

Which, by Equation 4.6, gives 

 ( 1) ( ) 2 ( 1) ( 2)f x f x f x f x         (4.25) 

This gives a horizontal second-order template as given in Figure 4.24. 

         

   -1 2 -1    
         

 Figure 4.24 Horizontal Second Order Template  

When the horizontal second order operator is combined with a vertical second order difference we 

obtain the full Laplacian template, given in Figure 4.25. Essentially, this computes the difference 

between a point and the average of its four direct neighbours. This was the operator used earlier in 

anisotropic diffusion, Section 3.5.5, where it is an approximate solution to the heat equation. 

         

   0 -1 0    

   -1 4 -1    

   0 -1 0    
         

 Figure 4.25 Laplacian Edge Detection Operator  

Application of the Laplacian operator to the image of the square is given in Figure 4.26. The original 

image is provided in numeric form in Figure 4.26(a). The detected edges are the zero crossings in 

Figure 4.26(b) and can be seen to lie between the edge of the square and its background. The result 

highlights the boundary of the square in the original image, but there is also a slight problem: there 

is a small hole in the shape in the lower right. This is by virtue of second order differentiation, 

which is inherently more susceptible to noise. Accordingly, to handle noise we need to introduce 

smoothing.  

 1    2    3    4    1    1    2    1 

 2    2    3    0    1    2    2    1 

 3    0   38   39   37   36    3    0 

 4    1   40   44   41   42    2    1 

 1    2   43   44   40   39    3    1 

 2    0   39   41   42   40    2    0 

 0    2    0    2    2    3    1    1 

 0    2    1    3    1    0    4    2 

 0    0    0    0    0    0    0    0 

 0    1  -31  -47  -36  -32    0    0 

 0  -44   70   37   31   60  -28    0 

 0  -42   34   12    1   50  -41    0 

 0  -37   47    8   -6   31  -32    0 

 0  -45   72   37   45   74  -36    0 

 0    6  -44  -38  -40  -31   -6    0 

 0    0    0    0    0    0    0    0 

(a) image data (b) result of the Laplacian operator 

Figure 4.26 Edge Detection via the Laplacian Operator 

An alternative structure to the template in Figure 4.25 is one where the central weighting is 8 and 

the neighbours are all weighted as -1. Naturally, this includes a different form of image information, 

so the effects are slightly different. (Essentially, this now computes the difference between a pixel 

and the average of its neighbouring points, including the corners.) In both structures, the central 

weighting can be negative and that of the four or the eight neighbours can be positive, without loss 
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of generality. Actually, it is important to ensure that the sum of template coefficients is zero, so that 

edges are not detected in areas of uniform brightness. One advantage of the Laplacian operator is 

that it is isotropic (like the Gaussian operator): it has the same properties in each direction. 

However, as yet it contains no smoothing and will again respond to noise, more so than a first-order 

operator since it is differentiation of a higher order. As such, the Laplacian operator is rarely used 

in its basic form. Smoothing can use the averaging operator described earlier but a more optimal 

form is Gaussian smoothing. When this is incorporated within the Laplacian we obtain a Laplacian 

of Gaussian (LoG) operator which is the basis of the Marr-Hildreth approach, to be considered 

next. A clear disadvantage with the Laplacian operator is that edge direction is not available. It does 

however impose low computational cost, which is its main advantage. Though interest in the 

Laplacian operator abated with rising interest in the Marr-Hildreth approach, a nonlinear Laplacian 

operator was developed [Vliet89] and shown to have good performance, especially in low-noise 

situations. 

4.2.2.3    The Marr-Hildreth Operator 

The Marr-Hildreth approach [Marr80] again uses Gaussian filtering. In principle, we require an 

image which is the second differential 
2  of a Gaussian operator g(x,y) convolved with an image 

P. This convolution process can be separated as: 

    2 2( , ) ( , )g x y g x y   P P  (4.26) 

Accordingly, we need to compute a template for  2 ( , )g x y  and convolve this with the image. By 

further differentiation of Equation 4.17, we achieve a Laplacian of Gaussian (LoG) operator : 
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 (4.27) 

This is the basis of the Marr-Hildreth operator. Equation 4.27 can be used to calculate the 

coefficients of a template which, when convolved with an image, combines Gaussian smoothing 

with second order differentiation. The operator is sometimes called a  ‘Mexican hat’ operator, since 

its surface plot is the shape of a sombrero, as illustrated in Figure 4.27.  
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Figure 4.27 Shape of Laplacian of Gaussian Operator 

 

The calculation of the Laplacian of Gaussian can be approximated by the difference of Gaussians 

where the difference is formed from two Gaussian filters with differing variance [Marr82, 

Lindeberg94].  

𝜎∇2𝑔(𝑥, 𝑦, 𝜎) =
𝜕𝑔

𝜕𝜎
= lim

𝑘→1

𝑔(𝑥,𝑦,𝑘𝜎)−𝑔(𝑥,𝑦,𝜎)

𝑘𝜎−𝜎
                           (4.28) 

where ( , , )g x y   is the Gaussian function and k is a constant. Although similarly named, the 

derivative of Gaussian, Equation 4.17, is a first order operator including Gaussian smoothing, 

( , )g x y . It does actually seem counter-intuitive that the difference of two smoothing operators 

should lead to second order edge detection. The approximation is illustrated in Figure 4.28 where 

in 1-D two Gaussian distributions of different variance are subtracted to form a 1-D operator whose 

cross-section is similar to the shape of the LoG operator (a cross-section of Figure 4.27). 

 

  

(a) two Gaussian distributions (b) after differencing 

Figure 4.28 Approximating the Laplacian of Gaussian by Difference of Gaussian 

 

The implementation of Equation 4.27 to calculate the template coefficients for the 

LoG_template operator is given in Code 4.7. The function includes a normalisation function 

which ensures that the sum of the template coefficients is unity, so that edges are not detected in 

area of uniform brightness. This is in contrast with the earlier Laplacian operator (where the 

template coefficients summed to zero) since the LoG operator includes smoothing within the 

differencing action, whereas the Laplacian is pure differencing. The template generated by this 

function can then be used within template convolution. The Gaussian operator again suppresses the 

influence of points away from the centre of the template, basing differentiation on those points 

nearer the centre; the standard deviation, sigma, is chosen to ensure this action. Again, it is 

isotropic consistent with Gaussian smoothing. 

0.2

0.4

0.6

0.8

1

0.1

0.2



Low-Level Feature Extraction 

 149 

function snd_order = LoG_template(winsize,sigma) 

 

half=floor(winsize/2)+1; 

snd_order(1:winsize,1:winsize)=0; 

  

%then form the LoG template 

sum=0; 

for x = 1:winsize %address all columns 

  for y = 1:winsize %address all rows except border, Eq. 4.27 

    snd_order(y,x)= (1/(sigma^2))*((((x-half)^2+(y-half)^2)/sigma^2)-2)*... 

                               exp(-(((x-half)^2+(y-half)^2)/(2*sigma^2))); 

    sum=sum+snd_order(y,x); 

  end 

end 

snd_order=snd_order/sum; 

end 

Code 4.7 Implementation of the Laplacian of Gaussian Operator 

Determining the zero-crossing points is a major difficulty with this approach. There is a variety of 

techniques which can be used, including manual determination of zero-crossings or a least squares 

fit of a plane to local image data, which is followed by determination of the point at which the plane 

crosses zero, if it does. The former is too simplistic, whereas the latter is quite complex.  

     

1    3 

     

     

2    4 

Figure 4.29 Regions for Zero Crossing Detection 

The approach here is much simpler: given a local 3 3  area of an image, this is split into 

quadrants. These are shown in Figure 4.29 where each quadrant contains the centre pixel. The first 

quadrant contains the four points in the upper left corner and the third quadrant contains the four 

points in the upper right. If the average of the points in any quadrant differs in sign from the average 

in any other quadrant, there must be a zero crossing at the centre point. In zero_cross, Code 4.8, 

the total intensity in each quadrant is evaluated, giving four values int(1) to int(4). If the 

maximum value of these points is positive, and the minimum value is negative, there must be a 

zero-crossing within the neighbourhood. If one exists, the output image at that point is marked as 

white, otherwise it is set to black. 

The action of the Marr-Hildreth operator is given in Figure 4.30, applied to the lizard image in 

Figure 4.22(a). The output of convolving the LoG operator is hard to interpret visually and is not 

shown here (remember that it is the zero-crossings which mark the edge points and it is hard to see 

them). The detected zero-crossings (for a 3 3  neighbourhood) are shown in Figures 4.30(b) and 

(c) for LoG operators of size 9 9  with 1.4   and 19 19  with 3.0  , respectively. These show 

that the selection of window size and variance can be used to provide edges at differing scales. 

Some of the smaller regions in Figure 4.30(b) join to form larger regions in Figure 4.30(c). Given 

the size of these templates, it is usual to use a Fourier implementation of template convolution 

(Section 3.4.4). Note that one virtue of the Marr-Hildreth operator is its ability to provide closed 

edge borders which the Canny operator cannot. Another virtue is that it avoids the recursion 

associated with hysteresis thresholding that can require a massive stack size for large images. 
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function zero_xing = zero_cross(image) 
%New image shows zero crossing points 

 

%get dimensions 

[rows,cols]=size(image); 

  

%set the output image to black (0) 

zero_xing(1:rows,1:cols)=0; 

  

%then form the four quadrant points 

for x = 2:cols-1 %address all columns except border 

  for y = 2:rows-1 %address all rows except border 

    int(1)=image(y-1,x-1)+image(y-1,x)+image(y,x-1)+image(y,x); 

    int(2)=image(y,x-1)+image(y,x)+image(y+1,x-1)+image(y+1,x); 

    int(3)=image(y-1,x)+image(y-1,x+1)+image(y,x)+image(y,x+1); 

    int(4)=image(y,x)+image(y,x+1)+image(y+1,x)+image(y+1,x+1); 

    %now work out the max and min values 

    maxval=max(int); 

    minval=min(int); 

    %and label it as zero crossing if there is one (!) 

    if (maxval>0)&&(minval<0)  

        zero_xing(y,x)=255;  

    end 

  end 

end 

Code 4.8 Zero Crossing Detector 

 

   

(a) image (b) LoG ( 9 9; 1.4  ) (c) LoG (19 19; 3  ) 

Figure 4.30 Marr-Hildreth Edge Detection 

The Fourier Transform of a (large) LoG operator is shown in relief in Figure 4.31(a) and as an 

image in Figure 4.31(b). The transform is circular-symmetric, as expected. Since the transform 

reveals that the LoG operator omits low and high frequencies (those close to the origin, and those 

far away from the origin) it is equivalent to a band-pass filter. Choice of the value of controls the 

spread of the operator in the spatial domain and the ‘width’ of the band in the frequency domain: 

setting to a high value gives low-pass filtering, as expected. This differs from first-order edge 

detection templates which offer a high-pass (differencing) filter along one axis with a low-pass 

(smoothing) action along the other axis. 
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(a) plot (b) image 

Figure 4.31 Fourier Transform of LoG Operator 

 

The Marr-Hildreth operator has stimulated much attention, perhaps in part because it has an 

appealing relationship to human vision, and its ability for multiresolution analysis (the ability to 

detect edges at differing scales). In fact, it has been suggested that the original image can be 

reconstructed from the zero-crossings at different scales. One early study [Haralick84] concluded 

that the Marr-Hildreth operator could give good performance. Unfortunately, the implementation 

appeared to be different from the original LoG operator (and has actually appeared in some texts in 

this form) as noted by one of the Marr-Hildreth study’s originators [Grimson85]. This led to a 

somewhat spirited reply [Haralick85] clarifying concern but also raising issues about the nature and 

operation of edge detection schemes which remain relevant today. Given the requirement for 

convolution of large templates, attention quickly focused on frequency domain implementation 

[Huertas86], and speed improvement was later considered in some detail [Forshaw88]. Later, 

schemes were developed to refine the edges produced via the LoG approach [Ulupinar90]. Though 

speed and accuracy are major concerns with the Marr-Hildreth approach, it is also possible for zero-

crossing detectors to mark as edge points ones which have no significant contrast, motivating study 

of their authentication [Clark89]. Gunn studied the relationship between mask size of the LoG 

operator and its error rate [Gunn99]. Essentially, an acceptable error rate defines a truncation error 

which in turn gives an appropriate mask size. Gunn also observed the paucity of studies on zero-

crossing detection and offered a detector slightly more sophisticated than the one here (as it includes 

the case where a zero-crossing occurs at a boundary whereas the one here assumes that the zero-

crossing can only occur at the centre). The similarity is not co-incidental: Mark developed the one 

here after conversations with Steve Gunn, who he works with! 

4.2.3 Other Edge Detection Operators 

There have been many approaches to edge detection. This is not surprising since it is often the first 

stage in a vision process. The most popular operators are the Sobel, Canny and Marr-Hildreth 

operators. Clearly, in any implementation there is a compromise between (computational) cost and 

efficiency. In some cases, it is difficult to justify the extra complexity associated with the Canny 

and the Marr-Hildreth operators. This is in part due to the images: few images contain the adverse 

noisy situations that complex edge operators are designed to handle. Also, when finding shapes, it 

is often prudent to extract more than enough low-level information, and to let the more sophisticated 

shape detection process use, or discard, the information as appropriate. For these reasons we will 

study only three more edge detection approaches, and only briefly. Two of these operators are the 

Spacek and the Petrou operators: both are designed to be optimal and both have different properties 

and a different basis (the smoothing functional in particular) to the Canny and Marr-Hildreth 

approaches. The Spacek and Petrou operators are included by virtue of their optimality. Essentially, 
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whilst Canny maximised the ratio of the signal to noise ratio with the localisation, Spacek 

[Spacek86] maximised the ratio of the product of the signal to noise ratio and the peak separation 

with the localisation. In Spacek’s work, since the edge was again modelled as a step function, the 

ideal filter appeared to be of the same form as Canny’s. Spacek’s operator can give better 

performance than Canny’s formulation [Jia95], as such challenging the optimality of the Gaussian 

operator for noise smoothing (in step edge detection), though such advantage should be explored 

in application.  

Petrou questioned the validity of the step-edge model for real images [Petrou91]. Given that the 

composite performance of an image acquisition system can be considered to be that of a low-pass 

filter, any step changes in the image will be smoothed to become a ramp. As such, a more plausible 

model of the edge is a ramp rather than a step. Since the process is based on ramp edges, and 

because of limits imposed by its formulation, the Petrou operator uses templates that are much 

wider in order to preserve optimal properties. As such, the operator can impose greater 

computational complexity but is a natural candidate for applications with the conditions for which 

its properties were formulated.  

Of the other approaches, Korn developed a unifying operator for symbolic representation of grey 

level change [Korn88]. The Susan operator [Smith97] derives from an approach aimed to find more 

than just edges since it can also be used to derive corners (where feature boundaries change 

direction sharply, as in curvature detection in Section 4.4.1) and structure-preserving image noise 

reduction. Essentially, SUSAN derives from Smallest Univalue Segment Assimilating Nucleus 

which concerns aggregating the difference between elements in a (circular) template centred on the 

nucleus. The USAN is essentially the number of pixels within the circular mask which have similar 

brightness to the nucleus. The edge strength is then derived by subtracting the USAN size from a 

geometric threshold, which is say ¾ of the maximum USAN size. The method includes a way of 

calculating edge direction, which is essential if non-maximum suppression is to be applied. The 

advantages are in simplicity (and hence speed), since it is based on simple operations, and the 

possibility of extension to find other feature types. 

 

 

    

(a) original image (b) first order (c) Prewitt (d) Sobel 

    

(e) Laplacian (f) Marr-Hildreth (g) Canny (h) Spacek 

Figure 4.32 Comparison of Edge Detection Operators 
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4.2.4  Comparison of Edge Detection Operators 

Naturally, the selection of an edge operator for a particular application depends on the application 

itself. As has been suggested, it is not usual to require the sophistication of the advanced operators 

in many applications. This is reflected in analysis of the performance of the edge operators on the 

images here. In order to provide a different basis for comparison, we shall consider the difficulty 

of low-level feature extraction in ultrasound images. As has been seen earlier (Section 3.5), 

ultrasound images are very noisy and require filtering prior to analysis. Figure 4.32(a) is part of the 

ultrasound image which could have been filtered using the truncated median operator (Section 

3.5.2). The image contains a feature called the pitus (it’s the “splodge” in the middle) and we shall 

see how different edge operators can be used to detect its perimeter, though without noise filtering. 

The median is a very popular filtering processes for general (i.e. non-ultrasound) applications. 

Accordingly, it is of interest that one study [Bovik87] has suggested that the known advantages of 

median filtering (the removal of noise with the preservation of edges, especially for salt and pepper 

noise) are shown to good effect if it is used as a prefilter to first- and second- order approaches, 

though naturally with the cost of the median filter. However, we will not consider median filtering 

here: its choice depends more on suitability to a particular application.  

The results for all edge operators have been generated using hysteresis thresholding where the 

thresholds were selected manually for best performance. The basic first-order operator, Figure 

4.32(b), responds rather nicely to the noise and it is difficult to select a threshold which reveals a 

major part of the pitus border. Some is present in the Prewitt and Sobel operators’ results, Figure 

4.32(c) and Figure 4.32(d) respectively, but there is still much noise in the processed image, though 

there is less in the Sobel – as expected. The Laplacian operator, Figure 4.32(e), gives very little 

information indeed, as to be expected with such noisy imagery. However, the more advanced 

operators can be used to good effect. The Marr-Hildreth approach improves matters, Figure 4.32(f), 

but suggests that it is difficult to choose a LoG operator of appropriate size to detect a feature of 

these dimensions in such noisy imagery – illustrating the compromise between the size of operator 

needed for noise filtering and the size needed for the target feature However, the Canny and Spacek 

operators can be used to good effect, as shown in Figures 4.32(g) and (h) respectively. These reveal 

much of the required information, together with data away from the pitus itself. In an automated 

analysis system, for this application, the extra complexity of the more sophisticated operators would 

clearly be warranted. 

 

4.2.5  Further Reading on Edge Detection  

Few computer vision and image processing texts omit detail concerning edge-detection operators, 

though few give explicit details concerning implementation. Naturally, many of the earlier texts 

omit the bases of techniques. Further information can be found in journal papers; Petrou’s excellent 

study of edge detection [Petrou94] highlights study of the performance factors involved in the 

optimality of the Canny, Spacek and Petrou operators with extensive tutorial support (though Petrou 

junior might have been embarrassed by the frequency his mugshot was used as his teeth showed up 

very well!). There have been a number of surveys of edge detection highlighting performance 

attributes in comparison. See for example [Torre86] that gives a theoretical study of edge detection 

and considers some popular edge detection techniques in light of this analysis. One survey, 

[Heath97] reviews many approaches, comparing them in particular with the Canny operator (and 

states where code for some of the techniques they compared can be found). This showed that best 

results can be achieved by tuning an edge detector for a particular application and highlighted good 

results by the Bergholm operator [Bergholm87]. Marr, [Marr82], considers the Marr-Hildreth 
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approach to edge detection in the light of human vision (and its influence on perception), with 

particular reference to scale in edge detection. [Yitzhaky03] suggests “a general tool to assist in 

practical implementations of parametric edge detectors where an automatic process is required” and 

uses statistical tests to evaluate edge detector performance. Since edge detection is one of the most 

important vision techniques, it continues to be a focus of research interest. In this regard: one recent 

paper used a patch based approach aimed at accuracy and computational efficiency [Dollár15]; 

another has been aimed to improve edge direction accuracy [Kimia18]. More recently, as we shall 

find in Chapter 12, deep learning approaches can base information flow on oriented edge detectors 

through an analysis network [LeCun15].  Accordingly, it is always worth looking at recent papers 

to find new techniques, or perhaps more likely performance comparison or improvements, that 

might help you solve a problem. 

4.3  Phase Congruency 

The comparison of edge detectors highlights some of their innate problems: incomplete contours; 

the need for selective thresholding; and their response to noise. Further, the selection of a threshold 

is often inadequate for all the regions in an image since there are many changes in local illumination. 

We shall find that some of these problems can be handled at a higher level, when shape extraction 

can be arranged to accommodate partial data and to reject spurious information. There is though 

natural interest in refining the low-level feature extraction techniques further.  

Phase congruency is a feature detector with two main advantages: it can detect a broad range of 

features; and it is invariant to local (and smooth) change in illumination. As the name suggests, it 

is derived by frequency domain considerations operating on the considerations of phase (a.k.a. 

time). It is illustrated detecting some one-dimensional features in Figure 4.33 where the features 

are the solid lines: a (noisy) step function in Figure 4.33(a), and a peak (or impulse) in Figure 

4.33(b). By Fourier transform analysis, any function is made up from the controlled addition of sine 

waves of differing frequencies. For the step function to occur (the solid line in Figure 4.33(a)), the 

constituent frequencies (the dotted lines in Figure 4.33(a)) must all change at the same time, so they 

add up to give the edge. Similarly, for the peak to occur, then the constituent frequencies must all 

peak at the same time; in Figure 4.33(b) the solid line is the peak and the dotted lines are some of 

its constituent frequencies. This means that in order to find the feature we are interested in, we can 

determine points where events happen at the same time: this is phase congruency. By way of 

generalisation, a triangle wave is made of peaks and troughs: phase congruency implies that the 

peaks and troughs of the constituent signals should coincide. 
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(a) step edge (b) peak 

Figure 4.33 Low-level Feature Extraction by Phase Congruency 

 

In fact, the constituent sine waves plotted in Figure 4.33(a) were derived by taking the Fourier 

transform and then determining the sine waves according to their magnitude and phase. The Fourier 

transform in Equation 2.15 delivers the complex Fourier components . These can be used to 

show the constituent signals xc by  

  (4.29) 

where  is again the magnitude of the uth Fourier component (Equation 2.7) and 

is the argument, the phase in Equation 2.8. The (dotted) frequencies displayed in Figure 4.33 are 

the first four odd components (the even components for this function are zero, as shown in the 

Fourier transform of the step in Figure 2.11). The addition of these components is indeed the inverse 

Fourier transform which reconstructs the step feature. 

The advantages are that detection of congruency is invariant with local contrast: the sine waves 

still add up so the changes are still in the same place, even if the magnitude of the step edge is much 

smaller. In images, this implies that we can change the contrast and still detect edges. This is 

illustrated in Figure 4.34. Here a standard image processing image, the “cameraman” image from 

the early UCSD dataset has been changed between the left and right side so the contrast changes in 

the two halves of the image, Figure 4.34(a). Edges detected by Canny are shown in Figure 4.34(b) 

and by phase congruency in 4.34(c). The basic structure of the edges detected by phase congruency 

is very similar to that structure detected by Canny, and the phase congruency edges appear 

somewhat cleaner (there is a single line associated with the tripod control in phase congruency); 

both detect the change in brightness between the two halves. There is a major difference though: 

the building in the lower right side of the image is barely detected in the Canny image whereas it 

can clearly be seen by phase congruency. Its absence is due to the parameter settings used in the 

Canny operator. These can be changed, but if the contrast were to change again, then the parameters 

would need to be re-optimised for the new arrangement. This is not the case for phase congruency. 

 

   

(a) modified cameraman 

image 

(b) edges by the Canny 

operator 

(c) phase congruency 

Figure 4.34 Edge Detection by Canny and by Phase Congruency 

 

Naturally such a change in brightness might appear unlikely in practical applications, but this is 

not the case with moving objects which interact with illumination or in fixed applications where 

illumination changes. In studies aimed to extract spinal information from digital videofluoroscopic 

X-ray images in order to provide guidance for surgeons [Zheng04], phase congruency was found 
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to be immune to the changes in contrast caused by slippage of the shield used to protect the patient 

while acquiring the image information. One such image is shown in Figure 4.35. The lack of 

shielding is apparent in the bloom at the side of the images. This changes as the subject is moved 

so it proved difficult to optimise the parameters for Canny over the whole sequence, Figure 4.35(b), 

but the detail of a section of the phase congruency result, Figure 4.35(c), shows that the vertebrae 

information is readily available for later high-level feature extraction. 

 

   

(a) Digital videofluoroscopic image of lower 

spine showing vertebrae 

(b) edges by the 

Canny operator 

(c) features by phase 

congruency 

Figure 4.35 Spinal Contour by Phase Congruency  

 

 

Figure 4.36 Summation in Phase Congruency 

 

The original notions of phase congruency are the concepts of local energy [Morrone87], with 

links to the human visual system [Morrone88]. One of the most sophisticated implementations was 

by Kovesi [Kovesi99], with added advantage that his Matlab implementation is available on the 

Web (https://www.peterkovesi.com/matlabfns/) as well as much more information. Essentially we 

seek to determine features by detection of points at which Fourier components are maximally in 

phase. By extension of the Fourier reconstruction functions in Equation 4.29, Morrone and Owens 

defined a measure of phase congruency PC as 
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  (4.30) 

where represents the local phase of the component Fpu at position x. Essentially this 

computes the ratio of the sum of projections onto a vector (the sum in the numerator) to the total 

vector length (the sum in the denominator). The value of  that maximizes this equation is the 

amplitude weighted mean local phase angle of all the Fourier terms at the point being considered. 

In Figure 4.36 the resulting vector is made up of four components, highlighting the projection of 

the second onto the resulting vector. Clearly, the value of PC ranges from 0 to 1, the maximum 

occurring when all elements point along the resulting vector. As such, the resulting phase 

congruency is a dimensionless normalized measure which is thresholded for image analysis. 

In this way, we have calculated the phase congruency for the step function in Figure 4.37(a) 

which is shown in Figure 4.37(b). Here, the position of the step is at time step 40; this is the position 

of the peak in phase congruency, as required. Note that the noise can be seen to affect the result, 

though the phase congruency is largest at the right place. 

 

 

  
(a) (noisy) step function (b) phase congruency of (noisy) step function 

Figure 4.37  One-Dimensional Phase Congruency 

 

One interpretation of the measure is that since for small angles, 
2cos 1    then Equation 

4.30 expresses the ratio of the magnitudes weighted by the variance of the difference to the summed 

magnitude of the components. There is certainly difficulty with this measure, apart from difficulty 

in implementation: it is sensitive to noise, as is any phase measure; it is not conditioned by the 

magnitude of a response (small responses are not discounted); and it is not well localised (the 

measure varies with the cosine of the difference in phase, not with the difference itself – though it 

does avoid discontinuity problems with direct use of angles). In fact, the phase congruency is 

directly proportional to the local energy [Venkatesh89], so an alternative approach is to search for 

maxima in the local energy. The notion of local energy allows us to compensate for the sensitivity 

to the detection of phase in noisy situations. 

For these reasons, Kovesi developed a wavelet-based measure which improved performance, 

whilst accommodating noise. In basic form, phase congruency can be determined by convolving a 

set of wavelet filters with an image, and calculating the difference between the average filter 

response and the individual filter responses. The response of a (one-dimensional) signal I to a set 
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of wavelets at scale n is derived from the convolution of the cosine and sine wavelets (discussed in 

Section 2.7.3) denoted   and , respectively 

  (4.31) 

to deliver the even and odd components at the nth  scale  and , respectively. The 

amplitude of the transform result at this scale is the local energy  

  (4.32) 

At each point x we will have an array of vectors which correspond to each scale of the filter. Given 

that we are only interested in phase congruency that occurs over a wide range of frequencies (rather 

than just at a couple of scales), the set of wavelet filters needs to be designed so that adjacent 

components overlap. By summing the even and odd components we obtain 

  (4.33) 

and a measure of the total energy A as 

      
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A x e x o x    (4.34) 

then a measure of phase congruency is  
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 (4.35) 

where the addition of a small factor  in the denominator avoids division by zero and any potential 

result when values of the numerator are very small. This gives a measure of phase congruency, 

which is essentially a measure of the local energy. Kovesi improved on this, improving on the 

response to noise, developing a measure which reflects the confidence that the signal is significant 

relative to the noise. Further, he considers in detail the frequency domain considerations, and its 

extension to two dimensions [Kovesi99]. For two-dimensional (image) analysis, given that phase 

congruency can be determined by convolving a set of wavelet filters with an image, and calculating 

the difference between the average filter response and the individual filter responses. The filters are 

constructed in the frequency domain by using complementary spreading functions; the filters must 

be constructed in the Fourier domain because the log-Gabor function has a singularity at zero 

frequency. In order to construct a filter with appropriate properties, a filter is constructed in a 

manner similar to the Gabor wavelet, but here in the frequency domain and using different 

functions. Following Kovesi’s implementation, the first filter is a low-pass filter, here a Gaussian 

filter g with L different orientations 
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where   is the orientation, s controls the spread about that orientation and l  is the angle of local 

orientation focus. The other spreading function is a band-pass filter, here a log-Gabor filter lg with 

M different scales.  
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where   is the scale,   controls bandwidth at that scale and   is the centre frequency at that 

scale. The combination of these functions provides a two-dimensional filter 2l Dg  which can act 

at different scales and orientations. 

      2 , , , , ,m l l ml Dg g lg          (4.38) 

One measure of phase congruency based on the convolution of this filter with the image P is 

derived by inverse Fourier transformation 
1  of the filter 2l Dg  (to yield a spatial domain 

operator) which is convolved as 

     1

,, ,
2 , , ,m l x yx y x y

S m l Dg      P  (4.39) 

to deliver the convolution result S at the mth  scale. The measure of phase congruency over the M 

scales is then 
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where the addition of a small factor   again avoids division by zero and any potential result when 

values of S are very small. This gives a measure of phase congruency, but is certainly a bit of an 

ouch, especially as it still needs refinement. 

Note that keywords re-occur within phase congruency: frequency domain, wavelets and 

convolution. By its nature, we are operating in the frequency domain and there is not enough room 

in this text, and it is inappropriate to the scope here, to expand further. Despite this, the performance 

of phase congruency certainly encourages its consideration, especially if local illumination is likely 

to vary and if a range of features is to be considered. It is derived by an alternative conceptual basis, 

and this gives different insight, let alone performance. Even better, there is a Matlab implementation 

available, for application to images - allowing you to replicate its excellent results. There has been 

further research, noting especially its extension in ultrasound image analysis [Mulet-Parada00] and 

its extension to spatiotemporal form [Myerscough04]. 

 

4.4  Localised Feature Extraction 

There are two main areas covered here. The traditional approaches aim to derive local features by 

measuring specific image properties. The main target has been to estimate curvature: peaks of local 

curvature are corners and analysing an image by its corners is especially suited to image of man-

made objects. The second area includes more modern approaches that improve performance 

by employing region or patch-based analysis. We shall start with the more established curvature 

based operators, before moving to the patch or region-based analysis. 
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4.4.1  Detecting Image Curvature (Corner Extraction) 

 

4.4.1.1  Definition of Curvature 

 

Edges are perhaps the low-level image features that are most obvious to human vision. They 

preserve significant features, so we can usually recognise what an image contains from its edge-

detected version. However, there are other low-level features that can be used in computer vision. 

One important feature is curvature. Intuitively, we can consider curvature as the rate of change in 

edge direction. This rate of change characterises the points in a curve; points where the edge 

direction changes rapidly are corners, whereas points where there is little change in edge direction 

correspond to straight lines. Such extreme points are very useful for shape description and 

matching, since they represent significant information with reduced data. 

Curvature is normally defined by considering a parametric form of a planar curve. The parametric 

contour      x yv t x t U y t U   describes the points in a continuous curve as the end points of the 

position vector. Here, the values of t  define an arbitrary parameterisation, the unit vectors are again

 1,0xU   and  0,1yU  . Changes in the position vector are given by the tangent vector function 

of the curve  v t . That is, 𝑣̇(𝑡) = 𝑥̇(𝑡)𝑈𝑥 + 𝑦̇(𝑡)𝑈𝑦. This vectorial expression has a simple intuitive 

meaning. If we think of the trace of the curve as the motion of a point and t  is related to time, the 

tangent vector defines the instantaneous motion. At any moment, the point moves with a speed 

given by |𝑣̇(𝑡)| = √𝑥̇2(𝑡) + 𝑦̇2(𝑡) in the direction 𝜙(𝑡) = 𝑡𝑎𝑛−1(𝑦̇(𝑡) 𝑥̇(𝑡)⁄ ). The curvature at a 

point  v t  describes the changes in the direction  t  with respect to changes in arc length. That 

is, 

  
 d t

t
ds


   (4.41) 

where s  is arc length, along the edge itself. Here   is the angle of the tangent to the curve. That 

is, 90   , where   is the gradient direction defined in Equation 4.13. That is, if we apply an 

edge detector operator to an image, then we can compute   to obtain a normal direction for each 

point in a curve. The tangent to a curve is given by an orthogonal vector. Curvature is given with 

respect to arc length because a curve parameterised by arc length maintains a constant speed of 

motion. Thus, curvature represents changes in direction for constant displacements along the curve. 

By considering the chain rule, we have 

  
 d t dt

t
dt ds


   (4.42) 

The differential ds dt  defines the change in arc length with respect to the parameter t. If we again 

consider the curve as the motion of a point, this differential defines the instantaneous change in 

distance with respect to time. That is, the instantaneous speed. Thus,  

 𝑑𝑠 𝑑𝑡 =⁄ |𝑣̇(𝑡)| = √𝑥̇2(𝑡) + 𝑦̇2(𝑡) (4.43) 

and 

 𝑑𝑡 𝑑𝑠 =⁄ 1 √𝑥̇2(𝑡) + 𝑦̇2(𝑡)⁄  (4.44) 

By considering that 𝜙(𝑡) = tan−1(𝑦̇(𝑡) 𝑥̇(𝑡)⁄ ), then the curvature at a point  v t  in Equation 4.42 

is given by 
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 𝜅(𝑡) =
𝑥̇(𝑡)𝑦̈(𝑡) − 𝑦̇(𝑡)𝑥̈(𝑡)

(𝑥̇2(𝑡) + 𝑦̇2(𝑡))
3 2⁄  (4.45) 

This relationship is called the curvature function and it is the standard measure of curvature for 

planar curves  [Apostol66]. An important feature of curvature is that it relates the derivative of a 

tangential vector to a normal vector. This can be explained by the simplified Serret-Frenet equations 

[Goetz70] as follows. We can express the tangential vector in polar form as  

 𝑣̇(𝑡) = |𝑣̇(𝑡)| (cos(𝜙(𝑡)) + 𝑗sin(𝜙(𝑡))) (4.46) 

If the curve is parameterised by arc length, then |𝑣̇(𝑡)|  is constant. Thus, the derivative of a 

tangential vector is simply given by  

 𝑣̈(𝑡) = |𝑣̇(𝑡)| (−sin(𝜙(𝑡)) + 𝑗cos(𝜙(𝑡)))
𝑑𝜙(𝑡)

𝑑𝑡
 (4.47) 

Since we are using a normal parameterisation, then    d t dt d t ds  . Thus, the tangential 

vector can be written as  

 𝑣̈(𝑡) =  𝜅(𝑡)𝐧(𝑡) (4.48) 

where 𝐧(𝑡) = |𝑣̇(𝑡)| (−sin(𝜙(𝑡)) + 𝑗cos(𝜙(𝑡))) defines the direction of 𝑣̈(𝑡) whilst the curvature 

( )t  defines its modulus. The derivative of the normal vector is given by 𝐧̇(𝑡) =

|𝑣̇(𝑡)| (−cos(𝜙(𝑡)) − 𝑗sin(𝜙(𝑡)))
𝑑𝜙(𝑡)

𝑑𝑠
  and can be written as 

 𝐧̇(𝑡) = −𝜅(𝑡)𝑣̇(𝑡) (4.49) 

Clearly  tn  is normal to 𝑣̇(𝑡). Therefore, for each point in the curve, there is a pair of orthogonal 

vectors 𝑣̇(𝑡) and  tn  whose moduli are proportionally related by the curvature. 

Generally, the curvature of a parametric curve is computed by evaluating Equation 4.45. For a 

straight line, for example, the second derivatives 𝑥̈(𝑡) and 𝑦̈(𝑡) are zero, so the curvature function 

is nil. For a circle of radius r, we have that 𝑥̇(𝑡) = 𝑟 cos(𝑡) and 𝑦̇(𝑡) = −𝑟 sin(𝑡). Thus, 𝑥̈(𝑡) =

−𝑟 sin(𝑡), 𝑦̈(𝑡) = −𝑟 cos(𝑡) and   1t r  . However, for curves in digital images, the derivatives 

must be computed from discrete data. This can be done in four main ways. The most obvious 

approach is to calculate curvature by directly computing the difference between angular direction 

of successive edge pixels in a curve. A second approach is to derive a measure of curvature from 

changes in image intensity. Finally, a measure of curvature can be obtained by correlation. 

 

4.4.1.2  Computing Differences in Edge Direction 

 

Perhaps the easier way to compute curvature in digital images is to measure the angular change 

along the curve's path. This approach was considered in early corner detection techniques 

[Bennett75][Groan78][Kitchen82] and it merely computes the difference in edge direction between 

connected pixels forming a discrete curve. That is, it approximates the derivative in Equation 4.41 

as the difference between neighbouring pixels. As such, curvature is simply given by 

   1 1t tk t      (4.50) 

where the sequence 1 1 2.... , , , .....t t t t       represents the gradient direction of a sequence of pixels 

defining a curve segment. Gradient direction can be obtained as the angle given by an edge detector 

operator. Alternatively, it can be computed by considering the positions of pixels in the sequence. 
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That is, by defining    1 1 1 1t t t t ty y x x        where  ,t tx y  denotes pixel t  in the sequence. 

Since edge points are only defined at discrete points, this angle can only take eight values, so the 

computed curvature is very ragged. This can be smoothed by considering the difference in mean 

angular direction of n pixels on the leading and trailing curve segment. That is, 
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The average also gives some immunity to noise and it can be replaced by a weighted average if 

Gaussian smoothing is required. The number of pixels considered, the value of n , defines a 

compromise between accuracy and noise sensitivity. Notice that filtering techniques may also be 

used to reduce the quantisation effect when angles are obtained by an edge detection operator. As 

we have already discussed, the level of filtering is related to the size of the template (as in Section 

3.4.3). 

In order to compute angular differences, we need to determine connected edges. Code 4.9 uses 

the data in the arrays magnitude and angle that contain the magnitude and angle of edges 

computed with the Canny edge operator. For each edge (i.e., a pixel with magnitude greater than 

one) the code fills the list edgeNeigbours with all the close edges. The curvature is computed by 

the average of the difference between the angle between the edge and the edges in its neighbour. 

The angle difference is computed by using the dot product of the vectors defining the edge direction.  
 
for x,y in itertools.product(range(0, width), range(0, height)): 

    # Edge 

    if magnitude[y,x] > 0:   

        # Consider neighbor edges 

        edgesNeigbor = [ ] 

        for wx,wy in itertools.product(range(-windowDelta, windowDelta+1),       \ 

                                       range(-windowDelta, windowDelta+1)): 

            if magnitude[y+wy, x+wx] > 0 :  

                edgesNeigbor.append((y+wy,x+wx)) 

                

        # Use dot product to measure angle difference 

        np = len(edgesNeigbor)      

        for p in range(0, np): 

            y1 = (edgesNeigbor[p])[0] 

            x1 = (edgesNeigbor[p])[1] 

            curvature[y,x] += 1.0-(cos(angle[y1,x1]) * cos(angle[y,x])         \ 

                                 + sin(angle[y1,x1]) * sin(angle[y,x])) 

        if np > 0: 

            curvature[y,x] /= np 

Code 4.9 Detecting Curvature by Angle Differences 

 

The result of applying this type of curvature detection is shown in Figure 4.38. Here Figure 

4.38(a) shows an image with regions whose borders have different curvature. Figure 4.38(d) shows 

an image of a real of object. The edges computed by the Canny edge detector are shown in Figures 

4.38(b) and (e). Figures 4.38(c) and (f) show the curvature obtained by computing the rate of change 

of edge direction. In these figures, curvature is defined only at the edge points. Here, by its 

formulation the measurement of curvature   gives just a thin line of differences in edge direction 

which can be seen to track the perimeter points of the shapes (at points where there is measured 

curvature). The brightest points are those with greatest curvature. In order to show the results, we 

have scaled the curvature values to use 256 intensity values. The estimates of corner points could 

be obtained by a uniformly thresholded version of Figure 4.38(f), well in theory anyway!  
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(a) image (b) edges (c) curvature 

   

(d) image (e) edges (f) curvature 

Figure 4.38 Curvature Detection by Angle Differences 

 

Unfortunately, as can be seen, this approach does not provide reliable results. It is essentially a 

reformulation of a first order edge detection process and presupposes that the corner information 

lies within the threshold data (and uses no corner structure in detection). One of the major 

difficulties with this approach is that measurements of angle can be severely affected by 

quantisation error and accuracy is limited [Bennett75], a factor which will return to plague us later 

when we study methods for describing shapes. 

 

4.4.1.3  Measuring Curvature by Changes in Intensity (Differentiation) 

 

As an alternative way of measuring curvature, we can derive the curvature as a function of 

changes in image intensity. This derivation can be based on the measure of angular changes in the 

discrete image. We can represent the direction at each image point as the function  ' ,x y . Thus, 

according to the definition of curvature, we should compute the change in these direction values 

normal to the image edge (i.e., along the curves in an image). The curve at an edge can be locally 

approximated by the points given by the parametric line defined by     cos ' ,x t x t x y   and 

    sin ' ,y t y t x y  . Thus, the curvature is given by the change in the function  ' ,x y  with 

respect to t . That is, 

 
         

'

' , ' , ' ,
( , )

x y x y x t x y y t
x y

t x t y t


    


    
    (4.52) 

where   cos( ')x t t     and   sin( ')y t t    . By considering the definition of the gradient 

angle, we have that the normal tangent direction at a point in a line is given by  

    1' , tanx y Mx My   . From this geometry we can observe that 
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    2 2 2 2cos ' and sin 'My Mx My Mx Mx My       (4.53) 

By differentiation of  ' ,x y  and by considering these definitions we obtain 
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2 2

' 3
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1
( , )
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 
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 

 (4.54) 

This defines a forward measure of curvature along the edge direction. We can actually use an 

alternative direction to the measure of curvature. We can differentiate backwards (in the direction 

of  -  ' ,x y ) which gives 
' ( , )x y

. In this case we consider that the curve is given by 

    cos ' ,x t x t x y    and     sin ' ,y t y t x y   . Thus, 
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 (4.55)  

Two further measures can be obtained by considering the forward and a backward differential 

along the normal. These differentials cannot be related to the actual definition of curvature, but can 

be explained intuitively. If we consider that curves are more than one pixel wide, differentiation 

along the edge will measure the difference between the gradient angle between interior and exterior 

borders of a wide curve. In theory, the tangent angle should be the same. However, in discrete 

images there is a change due to the measures in a window. If the curve is a straight line, then the 

interior and exterior borders are the same. Thus, gradient direction normal to the edge does not 

change locally. As we bend a straight line, we increase the difference between the curves defining 

the interior and exterior borders. Thus, we expect the measure of gradient direction to change. That 

is, if we differentiate along the normal direction, we maximise detection of gross curvature. The 

value 
' ( , )x y

 is obtained when     sin ' ,x t x t x y   and     cos ' ,y t y t x y  . In this 

case, 
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 (4.56) 

In a backward formulation along a normal direction to the edge, we obtain: 
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 (4.57)  

This was originally used by Kass [Kass88] as a means to detect line terminations, as part of a 

feature extraction scheme called snakes (active contours) which are covered in Chapter 6. Code 

4.10 shows an implementation of the four measures of curvature.  The arrays mX and mY store the 

gradient obtained by the convolutions of the original image with Sobel kernels in horizontal and 

vertical directions. The arrays mXx, mXy, mYx and mYy contain the convolutions of mX and mY 

with Sobel kernels. Figure 4.39 shows the form of the combined gradients where each combination 

detects changes in a different direction in the image.  Code 4.10 combines the first and second order 

gradients according to backward and forward formulations along the normal and edge direction. 

The result is computed according to the selection of parameter op. The curvature value is only 

computed at edge pixels. 
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for x,y in itertools.product(range(0, width), range(0, height)): 

    # If it is an edge 

    if magnitude[y,x] > 0: 

        Mx2,My2,MxMy = mX[y,x]*mX[y,x], mY[y,x]*mY[y,x], mX[y,x]*mY[y,x] 

         

        if Mx2 + My2 !=0.0: 

            p = 1.0/ pow((Mx2 + My2), 1.5) 

             

            if op == "T": 

                curvature[y,x] = p * (My2 * mXx[y,x] - MxMy * mYx[y,x] +  \ 

                                      Mx2 * mYy[y,x] - MxMy * mXy[y,x]) 

            if op == "TI": 

                curvature[y,x] = p * (-My2 * mXx[y,x] + MxMy * mYx[y,x] - \ 

                                      Mx2 * mYy[y,x] + MxMy * mXy[y,x])    

            if op == "N": 

                curvature[y,x] = p * (Mx2  * mYx[y,x] - MxMy * mYx[y,x] - \ 

                                      MxMy * mYy[y,x] + My2  * mXy[y,x])    

            if op == "NI": 

                curvature[y,x] = p * (-Mx2 *  mYx[y,x] + MxMy * mXx[y,x] + \ 

                                      MxMy * mYy[y,x] - My2 *  mXy[y,x])  

                 

            curvature[y,x] = fabs(curvature[y,x]) 

Code 4.10 Curvature by measuring changes in intensity 

 

 

   

(a) horizontal gradient, Mx  (b) Mxx (c) Mxy 

   

(d) vertical gradient, My (e) Myx (f) Myy 

Figure 4.39  First and Second Order Gradients 

 

Figure 4.40  shows the result for each operation for the synthetic image in Figure 4.38(a). We can 

see that the gradients locate edges and corners in different directions. That is, white and black 

alternates in each definition. However, all operations obtain maxima (or minima) where there is 

high curvature, so any of them can be used for curvature detection.  
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(a)   (b)   

  

(c)   (d)   

Figure 4.40  Comparing Image Curvature  

 

Figure 4.41 shows the curvature detected for the images shown in Figure 4.38. Curvature is obtained 

by the absolute value. In the figure, points where the curvature is large are highlighted. All functions 

obtain similar results and highlight features in the boundary, In general, we expect that the 

computation based on regions obtains better edges than when using angle differences (Figure 4.39) 

since convolution provides some filtering to the edges though there is little discernible performance. 

As the results in Figure 4.41 suggest, detecting curvature directly from an image is not totally 

reliable and further analysis shows that the computed values are just rough estimates of the actual 

curvature, however the results also show that these measures can effectively give strong evidence 

about the location of corners. The results are also very dependent on the size of the window used 

to compute the gradients and the size of the corners. 
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(a) Curvature magnitude |  | (b) Curvature magnitude |  | 

Figure 4.41  Curvature Detection Operators 

 

 

4.4.1.4  Moravec and Harris Detectors 

 

In the previous section, we measured curvature as the derivative of the function  ,x y  along the 

normal and edge directions. Alternatively, a measure of curvature can be obtained by considering 

changes along alternative directions in the image P  itself. This is the basic idea of Moravec's corner 

detection operator. This operator computes the average change in image intensity when a window 

is shifted in several directions. That is, for a pixel with coordinates  ,x y , and a window size of 

2 1w  we have that 

  
2

, , ,,
w w

u v x i y j x i u y j v

i w j w

x y      

 

    E P P  (4.58) 

This equation approximates the autocorrelation function in the direction  ,u v . A measure of 

curvature is given by the minimum value of  , ,u v x yE  obtained by considering the shifts  ,u v  in 

the four main directions. That is, by  1,0 ,  0, 1 ,  0,1  and  1,0 . The minimum is chosen 

because it agrees with the following two observations. First, if the pixel is in an edge defining a 

straight line,  , ,u v x yE  is small for a shift along the edge and large for a shift perpendicular to the 

edge. In this case, we should choose the small value since the curvature of the edge is small. 

Secondly, if the edge defines a corner, then all the shifts produce a large value. Thus, if we also 

chose the minimum, this value indicates high curvature. The main problem with this approach is 

that it considers only a small set of possible shifts. This problem is solved in the Harris corner 

detector [Harris88] by defining an analytic expression for the autocorrelation. This expression can 

be obtained by considering the local approximation of intensity changes.  

We can consider that the points 
,x i y j P  and 

,x i u y j v   P , define a vector  ,u v  in the image. Thus, 

in a similar fashion to the development given in Equation 4.58, the increment in the image function 

between the points can be approximated by the directional derivative 
, ,x i y j x i y ju x v y       P P

. Thus, the intensity at 
,x i u y j v   P  can be approximated as  
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P P  (4.59) 

This expression corresponds to the three first terms of the Taylor expansion around 
,x i y j P  (an 

expansion to first-order). If we consider the approximation in Equation 4.58 we have that 
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E  (4.60) 

By expansion of the squared term (and since u and v are independent of the summations), we obtain, 

        2 2

, , , 2 , ,u v x y A x y u C x y uv B x y v  E  (4.61) 

where 
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 (4.62) 

That is, the summation of the squared components of the gradient direction for all the pixels in 

the window. In practice, this average can be weighted by a Gaussian function to make the measure 

less sensitive to noise (i.e. by filtering the image data). In order to measure the curvature at a point 

 ,x y , it is necessary to find the vector  ,u v  that minimises  , ,u v x yE  given in Equation 4.61. In 

a basic approach, we can recall that the minimum is obtained when the window is displaced in the 

direction of the edge. Thus, we can consider that   cos ,u x y  and   sin ,v x y . These 

values were defined in Equation 4.53. Accordingly, the minima values that define curvature are 

given by 
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 
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E  (4.63) 

In a more sophisticated approach, we can consider the form of the function  , ,u v x yE . We can 

observe that this is a quadratic function, so it has two principal axes. We can rotate the function 

such that its axes have the same direction that the axes of the co-ordinate system. That is, we rotate 

the function  , ,u v x yE  to obtain 

      
2 22 2

, , , ,u v x y x y u x y v  F  (4.64) 

The values of   and   are proportional to the autocorrelation function along the principal axes. 

Accordingly, if the point  ,x y  is in a region of constant intensity, we will have that both values 

are small. If the point defines a straight border in the image, then one value is large and the other is 

small. If the point defines an edge with high curvature, both values are large. Based on these 

observations a measure of curvature is defined as   

     
2

,k x y k       (4.65) 

The first term in this equation makes the measure large when the values of   and   increase. The 

second term is included to decrease the values in flat borders. The parameter k  must be selected 

to control the sensitivity of the detector. The higher the value, the computed curvature will be more 

sensitive to changes in the image (and therefore to noise).  

In practice, in order to compute  ,k x y  it is not necessary to compute explicitly the values of 

  and  , but the curvature can be measured from the coefficient of the quadratic expression in 

Equation 4.61. This can be derived by considering the matrix forms of Equations 4.61 and 4.64. If 

we define the vector  𝐃𝑇 = [𝑢, 𝑣], then Equations 4.61 and 4.64 can be written as, 

    , ,, and ,T T

u v u vx y x y E D MD F D QD  (4.66) 

where T denotes the transpose and where 
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In order to relate Equations 4.61 and 4.64, we consider that 𝐅𝑢,𝑣(𝑥, 𝑦) is obtained by rotating 

𝐄𝑢,𝑣(𝑥, 𝑦)   by a transformation 𝐑 that rotates the axis defined by 𝐃. That is, 

    , ,
T

u v x y F RD MRD  (4.68) 

This can be arranged as 

  , , T T

u v x y F D R MRD  (4.69) 

By comparison with Equation 4.66, we have that 

 
TQ R MR  (4.70) 

This defines a well-known equation of linear algebra and it means that Q  is an orthogonal 

decomposition of M . The diagonal elements of Q  are called the eigenvalues. We can use Equation 

4.70 to obtain the value of   which defines the first term in Equation 4.65 by considering the 

determinant of the matrices. That is,        det det det detTQ R M R . Since R  is a rotation 

matrix    det det 1T R R , thus 

      
2

, , ,A x y B x y C x y    (4.71) 

which defines the first term in Equation 4.65. The second term can be obtained by taking the trace 

of the matrices on each side of this equation. Thus, we have that 

    , ,A x y B x y     (4.72) 

We can also use Equation 4.70 to obtain the value of    which defines the first term in Equation 

4.65. By taking the trace of the matrices in each side of this equation, we have that 

             
22

, , , , , ,k x y A x y B x y C x y k A x y B x y      (4.73) 

Code 4.11 shows an implementation for Equations 4.64 and 4.73. The equation to be used is 

selected by the op parameter. Curvature is only computed at edge points. That is, at pixels whose 

edge magnitude is different from zero after applying non-maximum suppression. The first part of 

the code computes the coefficients of the matrix M. Then, these values are used in the curvature 

computation. 
 

for x,y in itertools.product(range(0, width), range(0, height)): 

    # If it is an edge 

    if magnitude[y,x] > 0: 

        A, B, C = 0.0, 0.0, 0.0 

        for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)): 

            posY = y + wy - kernelCentre 

            posX = x + wx - kernelCentre  

                 

            if posY > -1 and posY <  height and posX > -1 and posX <  width: 

                A += mX[posY,posX] * mX[posY,posX] 

                B += mY[posY,posX] * mY[posY,posX] 

                C += mX[posY,posX] * mY[posY,posX] 

                     

        if op == "H": 

                curvature[y,x] = (A * B) - (C * C) - (k * ((A+B) * (A+B))) 

        if op == "M": 

                d = mX[y,x] * mX[y,x] + mY[y,x] * mY[y,x] 

                if d != 0.0: 

                    curvature[y,x] = (A * mY[y,x] * mY[y,x] -                   \ 

                                      2.0 * C * mX[y,x] * mY[y,x] +             \ 

                                      B * mX[y,x] * mX[y,x]) / d 
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Code 4.11 Harris Corner Detector 

 

Figure 4.42 shows the results of computing curvature using this implementation. The results are 

capable of showing the different curvature values in the border. We can observe that the Harris 

operator produces more contrast between lines with low and high curvature than when curvature is 

computed by the evaluating the minimum direction. The reason is the inclusion of the second term 

in Equation 4.73. In general, the measure of correlation is not only useful for computing curvature, 

but this technique has much wider application in finding points when matching pairs of images. 

  

(a) Harris operator (b) minimum direction 

  

 (c) Harris operator (d) minimum direction 

Figure 4.42 Curvature via the Harris Operator 

 

 

4.4.1.5  Further Reading on Curvature 

 

Many of the arguments earlier advanced on extensions to edge detection in Section 4.2 apply to 

corner detection as well, so the same advice applies. There is much less attention paid by established 

textbooks to corner detection though [Davies05] devotes a Chapter to the topic. Van Otterloo’s fine 

book on shape analysis [VanOtterloo91] contains a detailed analysis of measurement of (planar) 

curvature.  

There are other important issues in corner detection. It has been suggested that corner extraction 

can be augmented by local knowledge to improve performance [Rosin96]. There are actually many 

other corner detection schemes, each offering different attributes though with differing penalties. 

Important work has focused on characterising shapes using corners. In a scheme analogous to the 

primal sketch introduced earlier, there is a curvature primal sketch [Asada86], which includes a set 

of primitive parameterised curvature discontinuities (such as termination and joining points). There 

are many other approaches: one (natural) suggestion is to define a corner as the intersection between 

two lines, this requires a process to find the lines; other techniques use methods that describe shape 

variation to find corners. We commented that filtering techniques can be included to improve the 



Low-Level Feature Extraction 

 171 

detection process, however filtering can also be used to obtain a representation with multiple details. 

This representation is very useful to shape characterisation. A curvature scale space was developed 

[Mokhtarian86, Mokhtarian03] to give a compact way of representing shapes, and at different 

scales, from coarse (low-level) to fine (detail) and with ability to handle appearance 

transformations. 

4.4.2  Feature Point Detection; Region/Patch Analysis 

The modern approaches to local feature extraction aim to relieve some of the constraints on the 

earlier methods of localised feature extraction. This allows for the inclusion of scale: an object can 

be recognised irrespective of its apparent size. The object might also be characterised by a collection 

of points, and this allows for recognition where there has been change in the viewing arrangement 

(in a planar image an object viewed from a different angle will appear different, but points which 

represent it still appear in a similar arrangement). Using arrangements of points also allows for 

recognition where some of the image points have been obscured (because the image contains clutter 

or noise). In this way, we can achieve a description which allows for object or scene recognition 

direct from the image itself, by exploiting local neighbourhood properties. 

The newer techniques depend on the notion of scale space: features of interest are those which 

persist over selected scales. The scale space is defined by images which are successively smoothed 

by the Gaussian filter, as in Equation 3.26, and then subsampled to form an image pyramid at 

different scales, illustrated in Figure 4.43 for three levels of resolution. There are approaches which 

exploit structure within the scale space to improve speed, as we shall find. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43 Illustrating Scale Space 

 

 

4.4.2.1 Scale Invariant Feature Transform (SIFT)  

 

The Scale Invariant Feature Transform (SIFT) [Lowe99, Lowe04] aims to resolve many of the 

practical problems in low-level feature extraction and their use in matching images. The earlier 

Harris operator is sensitive to changes in image scale and as such is unsuited to matching images 

of differing size. The SIFT transform actually involves two stages: feature extraction and 

description. The description stage concerns use of the low-level features in object matching, and 

this will be considered later. Low-level feature extraction within the SIFT approach selects salient 

features in a manner invariant to image scale 

(feature size), and rotation and with partially 

Level 1 

Level 2 

Level 3 

John Hare 
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invariance to change in illumination.  Further, the formulation reduces the probability of poor 

extraction due to occlusion clutter and noise. Further, it shows how many of the techniques 

considered previously can be combined and capitalised on, to good effect. 

First, the difference of Gaussians operator is applied to an image to identify features of potential 

interest. The formulation aims to ensure that feature selection does not depend on feature size 

(scale) or orientation. The features are then analysed to determine location and scale before the 

orientation is determined by local gradient direction. Finally, the features are transformed into a 

representation that can handle variation in illumination and local shape distortion. Essentially, the 

operator uses local information to refine the information delivered by standard operators. The detail 

of the operations is best left to the source material [Lowe99, Lowe04] for it is beyond the level or 

purpose here. As such, we shall concentrate on principle only. 

Some features detected for an image are illustrated in Figure 4.44. Here, the major features 

detected are shown by white lines where the length reflects magnitude, and the direction reflects 

the feature’s orientation. These are the major features which include the head of the lizard and some 

leaves. The minor features are the smaller white lines: the ones shown here are concentrated around 

background features. In the full set of features detected at all scales in this image, there are many 

more of the minor features, concentrated particularly in the textured regions of the image (Figure 

4.45). Later we shall see how this can be used within shape extraction, but our purpose here is the 

basic low-level features. 

 

  
(a) original image (b) some of the output points with magnitude 

and direction 

Figure 4.44 Detecting Features with the SIFT Operator 

 

In the first stage, the difference of Gaussians for an image P is computed in the manner of 

Equation 4.28 as 

 
 ( , , ) ( , , ) ( , , )

( , , ) ( , , )

D x y g x y k g x y

L x y k L x y k

  



  

 

P
 (4.74) 

The function L is actually a scale space function which can be used to define smoothed images at 

different scales. Rather than any difficulty in locating zero-crossing points, the features are the 

maxima and minima of the function. Candidate keypoints are then determined by comparing each 

point in the function with its immediate neighbours. The process then proceeds to analysis between 

the levels of scale, given appropriate sampling of the scale space. This then implies comparing a 

point with its eight neighbours at that scale and with the nine neighbours in each of the adjacent 

scales, to determine whether it is a minimum or maximum, as well as image resampling to ensure 

comparison between the different scales. 

 In order to filter the candidate points to reject those which are the result of low local contrast 

(low edge strength) or which are poorly localised along 

an edge, a function is derived by local curve fitting John Hare 
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which indicates local edge strength and stability as well as 

location. Uniform thresholding then removes the keypoints 

with low contrast. Those that have poor localisation, i.e. their position is likely to be influenced by 

noise, can be filtered by considering the ratio of curvature along an edge to that perpendicular to it, 

in a manner following the Harris operator in Section 4.4.1.4, by thresholding the ratio of Equations 

4.71 and 4.72, 

In order to characterise the filtered keypoint features at each scale, the gradient magnitude is 

calculated in exactly the manner of Equations. 4.12 and 4.13 as 

    
2 2

( , ) ( 1, ) ( 1, ) ( , 1) ( , 1)SIFTM x y L x y L x y L x y L x y         (4.75) 
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 (4.76) 

The peak of the histogram of the orientations around a keypoint is then selected as the local direction 

of the feature. This can be used to derive a canonical orientation, so that the resulting descriptors 

are invariant with rotation. As such, this contributes to the process which aims to reduce sensitivity 

to camera viewpoint and to nonlinear change in image brightness (linear changes are removed by 

the gradient operations) by analysing regions in the locality of the selected viewpoint. The main 

description [Lowe04] considers the technique’s basis in much greater detail, and outlines factors 

important to its performance such as the need for sampling and performance in noise. 

As shown in Figure 4.45, the technique can certainly operate well, and scale is illustrated by 

applying the operator to the original image and to one at half the resolution. In all, 601 key points 

are determined in the original resolution image and 320 key points at half the resolution. By 

inspection, the major features are retained across scales (a lot of minor regions in the leaves 

disappear at lower resolution), as expected. Alternatively the features can of course be filtered 

further by magnitude, or even direction (if appropriate). If you want more than results to convince 

you, implementations are available for Windows and Linux 

(https://www.cs.ubc.ca/~lowe/keypoints/and some of the software sites noted in Table 1.2) – a feast 

for any developer.  These images were derived by using siftWin32, version 4. 

Note that description is inherent in the process - the standard SIFT keypoint descriptor is created 

by sampling the magnitudes and orientations of the image gradient in the region of the keypoint. 

An array of histograms, each with orientation bins, captures the rough spatial structure of the patch. 

This results in a vector which was later compressed by using PCA [Ke04] to determine the most 

salient features. Clearly this allows for faster matching than the original SIFT formulation, but the 

improvement in performance was later doubted [Mikolajczyk05].  

 

   

(a) original image (b) key points at full resolution (c) key points at half 

resolution 

Figure 4.45 SIFT Feature Detection at Different Scales 

 

John Hare 
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4.4.2.2 Speeded Up Robust Features (SURF)  

 

The central property exploited within SIFT is the use of difference of Gaussians to determine local 

features. In a relationship similar to the one between first- and second-order edge detection, the 

Speeded Up Robust Features (SURF) approach [Bay06, Bay08] employs approximations to second 

order edge detection, at different scales. The basis of the SURF operator is to use the integral image 

approach of Section 2.7.3.2 to provide an efficient means to compute approximations of second 

order differencing, shown in Figure 4.46. These are the approximations for a Laplacian of Gaussian 

operator with σ = 1.2 and represent the finest scale in the SURF operator. Other approximations 

can be derived for larger scales, since the operator – like SIFT – considers features which persist 

over scale space. The scale space can be derived by upscaling the approximations (wavelets) using 

larger templates which gives for faster execution than the use of smoothing and resampling in an 

image to form a pyramidal structure of different scales, which is more usual in scale-space 

approaches. 
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(a) vertical second order approximation (b) diagonal second order approximation 

Figure 4.46 Basis of SURF Feature Detection 

 

By the Taylor expansion of the image brightness (Equation 4.59) we can form a (Hessian) matrix 

M (Equation 4.67) from which the maxima are used to derive the features. This is  

   2det
xx xy

xx yy xy

xy yy

L L
L L w L

L L

 
    
 

M  (4.77) 

where the terms in M arise from the convolution of a second order derivative of Gaussian with the 

image information as   
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and where w is carefully chosen to balance the components of the equation. To localise interest 

points in the image and over scales, nonmaximum suppression is applied in a 3 × 3 × 3 

neighbourhood. The maxima of the determinant of the Hessian matrix are then interpolated in scale 

space and in image space and described by orientations derived using the vertical and horizontal 

Haar wavelets described earlier (Section 2.7.3.2). Not that there is an emphasis on speed of 

execution, as well as on performance attributes,  and so the generation of the templates to achieve 

scale space, the factor w, the interpolation operation to derive features and then their description 

are achieved using optimised processes. The developers have provided downloads for evaluation 

of SURF from www.vision.ee.ethz.ch/~surf/ .  The performance of the operator is illustrated in 

http://www.vision.ee.ethz.ch/~surf/
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Figure 4.47 showing the positions of the detected points for SIFT and for SURF. This shows that 

SURF can deliver fewer features, and which persist (and hence can be faster) whereas SIFT can 

provide more features (and be slower). As ever, choice depends on application – both techniques 

are available for evaluation and there are public domain implementations. The Binary Robust 

Independent  Elementary Features (BRIEF) approach simply uses intensity comparison as a 

detector [Calonder10], which is innately simple though with proven capability, especially speed as 

it is very fast. 

 

 

  

(a) SIFT (b) SURF 

Figure 4.47  Comparing Features Detected by SIFT and SURF  

 

4.4.2.3 FAST, ORB, FREAK, LOCKY and other keypoint detectors 

 

The need for fast interest point detection is manifest in the application of computer vision in Content 

Based Image Retrieval (CBIR) in robots and autonomous driving, and so the area has seen much 

attention. As illustrated in Figure 4.48 the aim is for matching: in autonomous driving one seeks a 

match from one image to the next; in face biometrics the target is points which do not change when 

the face changes in appearance, either by expression or by pose. The features are those which 

describe the underlying shape, and can be matched to each other. One basic tenet is whether the 

features are points-corners, or blobs (shown in Figure 4.49), and whether the features change with 

change in the image itself. If the image is moved (along either axis) and the features remain the 

same, this represents translation invariance. (The magnitude of the Fourier transform was 

previously shown to be shift invariant.) Then there is rotation, and then change in scale in the two 

axis directions. If an operator is invariant to change in translation, rotation and scale it is termed 

affine invariant and these points are termed keypoints. Not all the matched points are shown in 

Figure 4.49, just a subset of those automatically selected. 
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Figure 4.48  Matching by Keypoint Detection 

 

 The Features from Accelerated Segment Test (FAST) approach [Rosten06] is based on simple tests 

on a set of sixteen points centred on a pixel of interest with coordinates x,y. The points are arranged 

to be contiguous along a (discrete) circle and in principle if the brightness of all points on the circle 

exceed that of  ,x yI then the location x,y is labelled as a feature point. In more detail, given a 

threshold t, in a manner similar to hysteresis thresholding if three of the four points at compass 

directions (N, E, S and W) exceed  ,x y tI  or three of the four compass points are less than 

 ,x y tI  the point is possibly a feature point and the remaining twelve points are tested to 

determine if their brightness exceeds the centre point. Conversely if three of the four compass points 

do not exceed  ,x y tI  nor are three of the four compass points less than  ,x y tI  the point 

cannot be a feature point and the test is not conducted. The basis of the technique is fast by its use 

of comparisons. As can be observed in Figure 4.49(b), it offers good performance but relies on 

choice of a threshold and lacks robustness in noise and capability for extension to larger templates 

and so machine learning was deployed to improve its performance.  

 

   

(a) original image (b)  corners by basis of 

FAST 

(c) some of the regions for 

LOCKY features 
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Figure 4.49  Detecting Features by FAST and LOCKY 

 

A potential limitation of the FAST operator (when used for matching) is that it tests for existence 

and does not include orientation – unlike the SURF and SIFT operators. This limitation was 

alleviated by the ORB operator [Rublee11] (where the acronym derives from Oriented FAST and 

Rotated BRIEF, the latter being a descriptive operator) which thus includes rotation invariance. 

Since FAST does not produce a measure of cornerness, and can have large responses along edges, 

as to be seen in Figure 4.49(b), potential responses are filtered by shape measures. The basis of the 

filter is shape measures called moments, and these will be covered in Chapter 7. The extension of 

ORB to include descriptive capability is to be found in Chapter 5.In general, the approaches are 

known as binary descriptors since a binary string results from a sequence of comparisons. In ORB, 

pairs of points are learned to build the final descriptor.  

Both FAST and ORB illustrate the nature of advanced operators, which employ many of the 

basic techniques used in Computer Vision, which are in shape extraction, description and machine 

learning. This illustrates a computer vision textbook author’s difficulty since one writes a book to 

be read with linear progression, so one resorts (as we do) to forward references where necessary. 

The Fast Retina Keypoint (FREAK) operator [Alahi12] was inspired by analysis of the retina in 

the human visual system. The descriptor is built using intensity comparisons between regions which 

are smoothed using a Gaussian kernel. The regions are large at the periphery of a point of interest 

and much smaller when closer to it (a coarse-to-fine strategy), in a manner similar to the retina’s 

receptive field. Then, pairs of points are selected by variability, leading to a small and effective set 

of points. A more recent approach, the Locally Contrasting Keypoints (LOCKY) are features derived 

from a brightness clustering transform [Lomeli16] and can be thought as a coarse-to-fine search 

through scale spaces for the true derivative of the image. The brightness clustering uses a set of 

randomly positioned and (binary) sized rectangles which accumulate brightness using the integral 

image. The parameters to be chosen are the size of the rectangles and the number of votes to be 

accumulated. After thresholding the accumulated points the resulting image is thresholded and the 

LOCKY features are derived from the shapes of the connected components.  

There are many more operators, each with particular advantage. E.g. the Binary Robust Invariant 

Scalable Keypoints (BRISK) operator [Leutenegger11] uses a corner detector and then detects 

keypoints in scale-space, GIST [Oliva06] employs Gabor wavelets aiming to describe scenes, and 

STAR [Agrawal08] uses a form of Haar wavelets via an integral image. By virtue for the need to 

find and match objects in images, this research is unlikely to cease with an optimum operator. Now, 

much research focusses on Convolutional Neural Networks [Zheng18] and this will be considered 

later in Chapter 12. 
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(a) boat reference image (b) variation in reproducibility [Lomeli16] 

Figure 4.50  On the Performance of Interest Point Detectors [Lomeli16] 

 

The Oxford affine-covariant regions dataset [Mikolajczyk05] is an established dataset for 

evaluating feature detection. It is made up from eight sequences which comprise six images, each 

with increasing image transformations including change in illumination, perspective, blurring, 

(jpeg) compression and a combination of scale and rotation. A measure of repeatability is formed 

by projecting the detected features onto the same basis as the reference image (say, the first image 

of the sequence) using a homography matrix. The repeatability measure is one of how well the 

features detected on the images overlap and it is preferable to achieve high repeatability. Using the 

correspondences with 40% overlap, Figure 4.50 shows the reduction in repeatability for change in 

image appearance (the index). Comparison has been chosen to show no particular advantage; each 

technique has proponents (and antagonists!). As LOCKY is non deterministic, it is shown with error 

bars (which are always welcome in any evaluation). One might prefer the consistency of SURF, or 

the performance of BRISK. LOCKY appears to be as fast as the STAR operator and faster than 

other approaches. But this is just one image, one series of (mainly OpenCV) implementations, and 

one evaluation methodology: there are many variations to this theme. Another comparison 

[Mukherjee15] highlights the all-round performance of ORB, SIFT and BRIEF, and is a good place 

to look. As ever, there is no panacea: techniques fit applications and not the other way round. 

 

4.4.2.4 Other Techniques and Performance Issues 

 

There was a comprehensive performance review [Mikolajczyk05], comparing basic operators. The 

techniques which were compared included: SIFT; differential derivatives by differentiation; cross 

correlation for matching; and a gradient location and orientation based histogram (an extension to 

SIFT, which performed well). The criterion used for evaluation concerned the number of correct 

matches, and the number of false matches, between feature points selected by the techniques. The 

matching process was between an original image and one of the same scene when subject to one of 

six image transformations. The image transformations covered practical effects that can change 

image appearance and were: rotation; scale change; viewpoint change; image blur; JPEG 

compression; and illumination. For some of these there were two scene types available, which 

allowed for separation of understanding of scene type and transformation. The study observed that, 

within its analysis, “the SIFT-based descriptors perform best” but it is of course a complex topic 

and selection of technique is often application dependent. Note that there is further interest in 

performance evaluation, and in invariance to higher order changes in viewing geometry, such as 

invariance to affine and projective transformation. There are other comparisons available, either 

with new operators or in new applications and there (inevitably) are faster implementations too.  A 

later survey covered the field in more detail [Tuytelaars07], concerning principle and performance 

analysis. More recently, there has been much interest including deep learning for speed and 

accuracy. Given the continuing interest in CBIR, attention has turned to that. Note that CBIR 

includes detection and description, and the descriptions are covered in the next Chapter. Chapter 

12 covers deep learning in particular, and it is worth noting here that there has been a recent survey 

[Zheng18], covering the development of instance-level image retrieval (where a query image is 

matched to target images) and of its relationship with deep learning. In the context of this Chapter, 

this concerns SIFT-based detection methods. 
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4.4.3  Saliency 

4.4.3.1 Basic Saliency 

 

An early saliencyoperator [Kadir01] was also motivated by the need to extract robust and relevant 

features. In the approach, regions are considered salient if they are simultaneously unpredictable 

both in some feature and scale-space. Unpredictability (rarity) is determined in a statistical sense, 

generating a space of saliency values over position and scale, as a basis for later understanding. The 

technique aims to be a generic approach to scale and saliency compared to conventional methods, 

because both are defined independent of a particular basis morphology - meaning that it is not based 

on a particular geometric feature like a blob, edge or corner. The technique operates by determining 

the entropy (a measure of rarity) within patches at scales of interest and the saliency is a weighted 

summation of where the entropy peaks. The method has practical capability in that it can be made 

invariant to rotation, translation, non-uniform scaling, and uniform intensity variations and robust 

to small changes in viewpoint. An example result of processing the image in Figure 4.51(a) is shown 

in Figure 4.51(b) where the 200 most salient points are shown circled, and the radius of the circle 

is indicative of the scale. Many of the points are around the walking subject and others highlight 

significant features in the background, such as the waste bins, the tree or the time index. An example 

use of saliency was within an approach to learn and recognise object class models (such as faces, 

cars, or animals) from unlabelled and unsegmented cluttered scenes, irrespective of their overall 

size [Fergus03]. For further study and application, descriptions and Matlab binaries are available 

from Kadir’s website (http://www.robots.ox.ac.uk/~timork/ ). 

 

 

 

(a) original image (b) top 200 saliency matches circled  

Figure 4.51 Detecting Features by Saliency  

 

4.4.3.2 Context Aware Saliency 

 

There has been quite a surge of interest in saliency detection since the early works. The context 

aware saliency is grounded in psychology [Goferman12] (learning from human vision is invariably 

a good idea). The approach uses colour images, and the colour representation is the CIE Lab (to be 

covered later in Chapter 11) as it is known to be the closest system to human colour vision. The 

operator generates maps of saliency. In its basis, the operator uses distance which is oft a cue for 

http://www.robots.ox.ac.uk/~timork/


Feature Extraction and Image Processing in Computer Vision 

 180 

saliency in human vision. A point in the background of an image is likely to have similarity to 

points which are both near and far away. In contrast a point in the foreground, or a point of interest, 

is likely to be near another point of interest. Noting that a selection of distance measures is covered 

later in Chapter 12, the Euclidian distance 
pd  between the positions of two points p and q is 

             
2 2

,pd p q x p x q y p y q     (4.79) 

which is normalised by the image dimensions. Similarly, in terms of colour, a point is likely to be 

salient when the difference in colour is large. The Euclidean distance in colour dc between the two 

points is 
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where Np is the number of colour planes (usually 3, as in RGB). This is normalised to the range 

[0,1] by division by the maximum colour distance.  The dissimilarity between a pair of points is 

then proportional to the colour distance and inversely proportional to the spatial distance 
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where g is a constant chosen by experiment (in the original g = 3, and one can experiment). When 

the dissimilarity is largest, the points are most salient. The operator is actually patch based (in a 

manner similar to the non-local means operator) and p and q are the centre co-ordinates of an N×N 

patch A pixel a is considered to be salient if the appearance of the patch centred at the pixel a is 

distinctive with respect to all other image patches. The colour distance is then evaluated for two 

patches centred at a and b 
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Rather than use all the distances between patches, the operator uses the best K dissimilarities (the 

ones with the largest values). Again, the value for K can be chosen by experiment. The saliency at 

point a is determined by averaging the best K dissimilarities over patches b as 
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and has a low value when the point is similar to the other image points and is closer to 1.0 when it 

is dissimilar. This can be viewed as an operation at a chosen scale. If the image is resampled, or the 

operator arranged to process points at different intervals (or the image is iteratively smoothed) then 

the saliency at scale s is 
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The overall saliency is then the average of the saliency over the number of scales NS 

     
1

, 1,S a S a s s NS
NS

   (4.85) 

The process is illustrated in Fig 4.52 for settings K = 64, g = 3 and NS = 4. Fig 4.52 shows the 

original image (in printed versions a colour version of the original is to be found later) and the 
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saliency at scales 1 and 4 (Equation 4.84) and the overall saliency over the four scales (Equation 

4.85). Note that the eye features prominently as do some of the leaves (but not all). These are to be 

expected. There is also a region near the lizard’s front left foot, which on closer inspection stands 

out, but is less apparent to human vision when looking at the whole image: one does not see a 

combination of colour and spatial difference, as exemplified by the context aware saliency operator. 

 

  

(a) original image (b) saliency (Equation 4.84) 

  

(c) scale 1 (d) scale 4 

Figure 4.52 Detecting Features by Context Aware Saliency 

 

This is neither the whole story nor the full one. Given the difficulty of exact implementation of any 

technique, one should consult Goferman’s original version [Goferman12], and later any variants. 

Potential differences include the nature of the spatial operator and the normalisation procedures. 

There is also a question of windowing and the version here used a basis similar to that of the non-

local means smoothing operator (Section 3.5.3) and here the patch size was 7×7 and the search 

region 13×13 (a limitation of larger search size is that the inverse relationship with distance makes 

a large search infeasible as well as slow). One can of course analyse the result of processing the 

same images as in the original version, and the differences are more in the details. The original 

version was extended to include the immediate context and that has not been included here. 

 

4.4.3.3 Other Saliency Operators 

 

Methods that use local contrast, similar to context aware saliency, tend to produce higher saliency 

values near edge points instead of uniformly highlighting salient objects as can be observed in 

Figure 4.52(b). The newer histogram contrast method [Cheng15] measures saliency by evaluating 

pixel-wise saliency values using colour separation from all other image pixels. The saliency of a 

pixel is thus defined using its colour (again the CIE Lab) difference from all other pixels in the 

image 
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Expanding this as a list of differences for N image points  

        1 2, , ... ,c c c NS p d p I d p I d p I     (4.87) 

By this, points with the same colour have the same saliency value as we have only considered colour 

not space. By grouping the terms with the same colour value 
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where 
lc  is the colour of point p, NC is the number of colours and 

if  is the probability of pixel 

colour 
ic . By comparing each point with every other point, Equation 4.86, the computation is 

 2O N  whereas by Equation 4.88 the computational complexity is  2O N NC . So to speed up 

the operator, one needs to compress the colour space, to reduce NC. It is not the time to dwell on 

colour here, and this is achieved by colour quantisation and smoothing. The extension to include 

spatial awareness, called the region contrast operator, employs colour region segmentation and 

contrast with distance regions attracting low weight (as in contrast aware saliency). 

As shown in Figure 4.53 there is a variety of operators for saliency. Given the image of the 

gnome in Figure 4.53(a) there are two objects behind it and the gnome has eyes and a hat. One 

operator detects the objects (b), one the eyes, the edges and the objects (c), just the gnome’s head 

and beard (in sections) (d), and the objects and the (sectioned) gnome (e), The latter operator is the 

region contrast refined version of the histogram contrast method described in Equation 4.88. 

Clearly, saliency can be suck and see, as are many computer vision operators, and there is a rich 

selection of diverse techniques by which a version can be obtained. After all, what indeed is 

saliency? None of the approaches includes shape, implicitly and intentionally, and shape comes in 

the next Chapter.  

 

     

(a) image (b) [Achanta08] (c) context aware (d) [Jiang11] (e) region contrast 

Figure 4.53 Comparison of State of Art Saliency Methods [Cheng15] 

 

There has been a series of benchmarking studies for the performance (accuracy and speed) of the 

saliency operators. The most recent [Borji15] noted the continuing progress improving both factors, 

and that operators designed specifically for saliency outperformed those which were derived in 

other areas. There has been interest in using deep learning which aims for better performance and 

at speed and this has motivated fast analysis of saliency [Wang18]. Another study uses 

autoencoders [Li 18] (see Chapter 12) and also introduces a dataset for video saliency analysis. 

Perhaps this is the way to achieve saliency at video rate. A, perhaps unwelcome, recent development 

is to refer to saliency as Salient Object Detection and thus by the acronym SOD. Though it will 

allow native speakers of English to vent their frustration, we avoided the temptation to use that 

acronym here. 
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4.5  Further Reading 

This Chapter has covered the main ways to extract low-level feature information. There has been 

an enormous amount of work in low-level features since this is a primary feature extraction task in 

Computer Vision and Image Processing. In some cases this can prove sufficient for understanding 

the image. Often though, the function of low-level feature extraction is to provide information for 

later higher level analysis. This can be achieved in a variety of ways, with advantages and 

disadvantages and quickly or at a lower speed (or requiring a faster processor/ more memory!). The 

range of techniques presented here has certainly proved sufficient for the majority of applications. 

There are other, more minor techniques, but the main approaches to boundary, corner, feature and 

motion extraction have proved sufficiently robust and with requisite performance that they shall 

endure for some time. Given depth and range, the further reading for each low level operation is to 

be found at the end of each section. We shall collect the most recent work on Deep Learning in 

Chapter 12 and shall find that the techniques from this Chapter are important in the new 

architectures for image analysis. 

We now move on to using this information at a higher level. This means collecting the 

information so as to find shapes and objects, the next stage in understanding the image’s content. 

 

4.6  Chapter 4 References 

[Alahi12] Alahi, A., Ortiz, R. and Vandergheynst, P., Freak: Fast retina keypoint. Proc. CVPR, pp. 

510-517, 2012 

[Achanta08] Achanta, R., Estrada, F., Wils, P. and Süsstrunk, S., Salient region detection and 

segmentation. In Int. Conf. on Computer Vision Systems, pp. 66-75, 2008 

[Adelson85] Adelson, E. H., and Bergen, J. R., Spatiotemporal Energy Models for the Perception 

of Motion, Journal of the Optical Society of America, A2(2), pp 284-299, 1985 

[Agrawal08] Agrawal, M., Konolige, K. and Blas, M. R., Censure: Center surround extremas for 

realtime feature detection and matching, Proc. ECCV, pp. 102-115, 2008 

[Apostol66] Apostol, T. M., Calculus, 2nd Ed., 1, Xerox College Publishing, Waltham, 1966 

[Asada86] Asada, H., and Brady, M., The Curvature Primal Sketch, IEEE Trans. on PAMI, 8(1), 

pp 2-14, 1986 

[Bailer15] Bailer, C., Taetz, B. and Stricker, D., Flow fields: Dense correspondence fields for highly 

accurate large displacement optical flow estimation. Proc. CVPR, 2015 

[Baker11] Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J. and Szeliski, R., A database 

and evaluation methodology for optical flow. International Journal of Computer Vision, 92(1), 

pp.1-31, 2011 

[Barnard87] Barnard, S. T., and Fichler, M. A., Stereo Vision, in Encyclopedia of Artificial 

Intelligence, New York: John Wiley, pp 1083-2090, 1987 

[Bay06] Bay, H., Tuytelaars, T., and Van Gool, L., SURF: Speeded Up Robust Features, Proc. 

ECCV 2006, pp 404-417, 2006 

[Bay08] Bay, H., Eas, A., Tuytelaars, T., and Van Gool, L., Speeded-Up Robust Features (SURF), 

Computer Vision and Image Understanding, 110(3), pp 346-359, 2008 



Low-Level Feature Extraction 

 185 

[Bennet75] Bennet, J. R., and MacDonald, J. S., On the Measurement of Curvature in a Quantised 

Environment, IEEE Trans. on Computers, C-24(8), pp 803-820, 1975 

[Bergholm87] Bergholm, F., Edge Focussing, IEEE Trans. on PAMI, 9(6), pp 726-741, 1987 

[Borji15] Borji, A., Cheng, M.M., Jiang, H. and Li, J., Salient object detection: A benchmark. IEEE 

Trans. on IP, 24(12), pp.5706-5722, 2015 

[Bovik87] Bovik, A. C., Huang, T. S., and Munson, D. C., The Effect of Median Filtering on Edge 

Estimation and Detection, IEEE Trans. on PAMI, 9(2), pp 181-194, 1987 

[Calonder10] Calonder, M., Lepetit, V., Strecha, C. and Fua, P., BRIEF: Binary robust independent 

elementary features. Proc. ECCV, pp. 778-792, 2010 

[Canny86] Canny, J., A Computational Approach to Edge Detection, IEEE Trans. on PAMI, 8(6), 

pp 679-698, 1986 

[Cheng15] Cheng, M. M., Mitra, N. J., Huang, X., Torr, P. H. and Hu, S.M., Global contrast based 

salient region detection. IEEE Trans. on PAMI, 37(3), pp. 569-582, 2015 

[Clark89] Clark, J. J., Authenticating Edges Produced by Zero-Crossing Algorithms, IEEE Trans. 

on PAMI, 11(1), pp 43-57, 1989 

[Davies05] Davies, E. R., Machine Vision: Theory, Algorithms and Practicalities, Morgan 

Kaufmann (Elsevier), 3rd Edition, 2005. 

[Deriche87] Deriche, R., Using Canny’s Criteria to Derive a Recursively Implemented Optimal 

Edge Detector, International Journal of Computer Vision, 1, pp 167-187, 1987 

[Dhond89] Dhond, U. R. and Aggarwal J. K., Structure From Stereo- a Review, IEEE Trans. on 

Systems, Man and Cybernetics, 19(6), pp 1489-1510, 1989  

[Dollár15] Dollár, P., and Zitnick, C. L., Fast edge detection using structured forests, IEEE Trans. 

on PAMI, 37(8), pp 1558-1570, 2015 

[Dosovitskiy15] Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van 

Der Smagt, P., Cremers, D. and Brox, T., Flownet: Learning optical flow with convolutional 

networks. Proc. ICCV, pp. 2758-2766, 2015 

[Fergus03] Fergus, R., Perona, P., and Zisserman, A., Object Class Recognition by Unsupervised 

Scale-Invariant Learning, Proc. CVPR 2003, II, pp 264-271, 2003 

[Fleet90] Fleet, D. J. and Jepson, A. D., Computation of Component Image Velocity from Local 

Phase Information, International Journal of Computer Vision, 5(1), pp. 77-104, 1990 

[Forshaw88] Forshaw, M. R. B., Speeding Up the Marr-Hildreth Edge Operator, CVGIP, 41, pp 

172-185, 1988 

[Fortun15] Fortun, D., Bouthemy, P. and Kervrann, C., Optical flow modeling and computation: a 

survey. Computer Vision and Image Understanding, 134, pp.1-21, 2015 

[Goetz70] Goetz, A., Introduction to Differential Geometry, Addison-Wesley, Reading MA USA, 

1970 

[Goferman12] Goferman, S., Zelnik-Manor, L. and Tal, A., Context-aware saliency detection. IEEE 

Trans. on PAMI, 34(10), pp.1915-1926, 2012 

[Grimson85] Grimson, W. E. L., and Hildreth, E. C., Comments on “Digital Step Edges from Zero 

Crossings of Second Directional Derivatives, IEEE Trans. on PAMI, 7(1), pp 121-127, 1985 

[Groan78] Groan, F., and Verbeek, P., Freeman-Code Probabilities of Object Boundary Quantized 

Contours, Comput. Vision, Graphics, Image Processing, 7, pp 391-402, 1978 

[Gunn99] Gunn, S. R., On the Discrete Representation of the Laplacian of Gaussian, Pattern 

Recognition, 32(8), pp 1463-1472, 1999 



Feature Extraction and Image Processing in Computer Vision 

 186 

[Haddon88] Haddon, J. F., Generalised Threshold Selection for Edge Detection, Pattern 

Recognition, 21(3), pp 195-203, 1988 

[Harris88] Harris, C., and Stephens, M., A Combined Corner and Edge Detector, Proc. Fourth 

Alvey Vision Conference, pp 147-151, 1988 

[Haralick84] Haralick, R. M., Digital Step Edges from Zero-Crossings of Second Directional 

Derivatives, IEEE Trans. on PAMI, 6(1), pp 58-68, 1984 

[Haralick85] Haralick, R. M., Author’s Reply, IEEE Trans. on PAMI, 7(1), pp 127-129, 1985 

[Heath97] Heath, M. D., Sarkar, S., Sanocki, T., and Bowyer, K. W., A Robust Visual Method of 

Assessing the Relative Performance of Edge Detection Algorithms, IEEE Trans. on PAMI, 

19(12), pp 1338-1359, 1997 

[Horn81] Horn, B. K. P., and Schunk, B. G., Determining Optical Flow, Artificial Intelligence, 17, 

pp 185-203, 1981 

[Horn86] Horn, B. K. P., Robot Vision, MIT Press, Cambridge, 1986 

[Horn93] Horn, B. K. P., and Schunk, B. G., Determining Optical Flow: a Retrospective, Artificial 

Intelligence, 59, pp 81-87, 1993 

[Huang99] Huang, P. S., Harris, C. J. and Nixon, M. S., Human Gait Recognition in Canonical 

Space using Temporal Templates, IEE Proceedings Vision Image and Signal Processing, 146(2), 

pp 93-100, 1999 

[Huertas86] Huertas, A., and Medioni, G., Detection of Intensity Changes with Subpixel Accuracy 

using Laplacian-Gaussian Masks, IEEE Trans. on PAMI, 8(1), pp 651-664, 1986 

[Ilg17] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A. and Brox, T., Flownet 2.0: 

Evolution of optical flow estimation with deep networks. Proc. CVPR, 2017 

 [Jia95] Jia, X., and Nixon, M. S., Extending the Feature Vector for Automatic Face Recognition, 

IEEE Trans. on PAMI, 17(12), pp 1167-1176, 1995 

[Jiang11] Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N. and Li, S., Automatic salient object 

segmentation based on context and shape prior. In Proc. BMVC, 2011 

[Jordan92] Jordan III, J. R. and Bovik A. C., M. S., Using Chromatic Information in Dense Stereo 

Correspondence, Pattern Recognition, 25, pp 367-383, 1992 

[Kadir01] Kadir, T., and Brady, M., Scale, Saliency and Image Description, International J. 

Computer Vision. 45(2), pp 83-105, 2001 

[Kanade94] Kanade, T. and Okutomi, M., A Stereo Matching Algorithm with an Adaptive Window: 

Theory and Experiment, IEEE Trans. on PAMI, 16, pp 920-932, 1994 

[Kass88] Kass, M., Witkin, A. and Terzopoulos, D., Snakes: Active Contour Models, Int. J. 

Computer Vision, 1(4), pp 321-331, 1988 

[Ke04] Y. Ke and R. Sukthankar. PCA-sift: A more distinctive representation for local image 

descriptors. Proc. CVPR 2004, II, pp 506–513, 2004. 

[Kimia18] Kimia, B. B., Li, X., Guo, Y., and Tamrakar, A., Differential geometry in edge detection: 

accurate estimation of position, orientation and curvature, IEEE Trans. on PAMI, DOI 

10.1109/TPAMI.2018.2846268, 2018 

[Kitchen82] Kitchen, L. and Rosenfeld, A., Gray-Level Corner Detection, Pattern Recog. Lett., 

1(2), pp 95-102, 1982 

[Korn88] Korn, A. F., Toward a Symbolic Representation of Intensity Changes in Images, IEEE 

Trans. on PAMI, 10(5), pp 610-625, 1988 

[Kovesi99] Kovesi, P., Image Features from Phase Congruency. Videre: Journal of Computer 

Vision Research, 1(3), pp 1–27, 1999 



Low-Level Feature Extraction 

 187 

[Lawton83] Lawton, D. T., Processing Translational Motion Sequences, Computer Vision, 

Graphics and Image Processing, 22, pp 116-144, 1983 

[LeCun15] LeCun, Y., Bengio, Y. and Hinton, G., Deep learning, Nature, 521(7553), pp.437-444, 

2015 

[Lee93] Lee, C. K., Haralick, M., Deguchi, K., Estimation of Curvature from Sampled Noisy Data, 

ICVPR'93, pp 536-541, 1993 

[Leutenegger11] Leutenegger, S., Chli, M. and Siegwart, R.Y., 2011, BRISK: Binary robust 

invariant scalable keypoints. Proc. ICCV, pp. 2548-2555, 2011 

[Li 18] Li, J., Xia, C. and Chen, X., A benchmark dataset and saliency-guided stacked autoencoders 

for video-based salient object detection. IEEE Trans. on IP, 27(1), pp.349-364, 2018 

[Lindeberg94] Lindeberg, T., Scale-Space Theory: a Basic Tool for Analysing Structures at 

Different Scales. Journal of Applied Statistics, 21(2), pp 224-270, 1994 

[Little98] Little, J. J. and Boyd, J. E., Recognizing People By Their Gait: The Shape of Motion, 

Videre, 1(2), pp 2-32, 1998, online at http://mitpress.mit.edu/e-journals/VIDE/001/v12.html 

[Lomeli16] Lomeli-R, J., and Nixon, M. S., An extension to the brightness clustering transform and 

locally contrasting keypoints, Machine Vis. and Apps., 27(8) pp. 1187-1196, 2016 

[Lowe99] Lowe, D. G., Object Recognition from Local Scale-Invariant Features, Proc. ICCV, pp 

1150-1157, 1999 

[Lowe04] Lowe, D. G., Distinctive Image Features from Scale-Invariant Key points, International 

J. of Computer Vision, 60(2), pp 91-110, 2004 

[Lucas81] Lucas, B., and Kanade, T., An Iterative Image Registration Technique with an 

Application to Stereo Vision, Proc DARPA Image Understanding Workshop, pp 121-130, 1981 

[Marr80] Marr, D. C., and Hildreth, E., Theory of Edge Detection, Proc. Royal Society of London, 

B207, pp 187-217, 1980 

[Marr82] Marr, D., Vision, W. H. Freeman and Co., N.Y. USA, 1982 

[Mikolajczyk05] Mikolajczyk, K., and Schmid, C., A Performance Evaluation of Local Descriptors, 

IEEE Trans. on PAMI, 27(10), pp 1615- 1630, 2005 

[Mokhtarian86] Mokhtarian F., and Mackworth, A. K., Scale-Space Description and Recognition 

of Planar Curves and Two-Dimensional Shapes, IEEE Trans. on PAMI, 8(1), pp 34-43, 1986 

[Mokhtarian03] Mokhtarian F., and Bober, M., Curvature Scale Space Representation: Theory, 

Applications and MPEG-7 Standardization, Kluwer Academic Publishers, 2003 

[Morrone87] Morrone, M. C., and Owens, R. A., Feature Detection from Local Energy, Pattern 

Recognition Letters, 6, pp 303–313, 1987. 

[Morrone88] Morrone M. C., and Burr, D. C., Feature Detection in Human Vision: a Phase-

Dependent Energy Model, Proceedings of the Royal Society of London, Series B, Biological 

Sciences, 235(1280), pp 221–245, 1988 

[Mukherjee15] Mukherjee, D., Wu, Q. J. and Wang, G., A comparative experimental study of 

image feature detectors and descriptors. Machine Vis. and Apps., 26(4), pp.443-466, 2015 

[Mulet-Parada00] Mulet-Parada, M., and Noble, J. A., 2D+T Acoustic Boundary Detection in 

Echocardiography, Medical Image Analysis, 4, pp 21–30, 2000 

[Myerscough04] Myerscough, P. J., and Nixon, M. S. Temporal Phase Congruency. Proc. IEEE 

Southwest Symposium on Image Analysis and Interpretation SSIAI ’04, pp 76-79, 2004 

[Nagel87] Nagel, H. H., On the Estimation of Optical Flow: Relations between Different 

Approaches and some New Results, Artificial Intelligence, 33, pp 299-324, 1987 

http://mitpress.mit.edu/e-journals/VIDE/001/v12.html


Feature Extraction and Image Processing in Computer Vision 

 188 

[Oliva06] Oliva, A. and Torralba, A., Building the gist of a scene: The role of global image features 

in recognition. Progress in Brain Research, 155, pp.23-36, 2006 

[Otterloo91] van Otterloo, P. J., A Contour-Oriented Approach to Shape Analysis, Prentice Hall 

International (UK) Ltd., Hemel Hempstead UK, 1991 

[Petrou91] Petrou, M., and Kittler, J., Optimal Edge Detectors for Ramp Edges, IEEE Trans. on 

PAMI, 13(5), pp 483-491, 1991 

[Petrou94] Petrou, M., The Differentiating Filter Approach to Edge Detection, Advances in 

Electronics and Electron Physics, 88, pp 297-345, 1994 

[Prewitt66] Prewitt, J. M. S. and Mendelsohn, M. L., The Analysis of Cell Images, Ann. N. Y. Acad. 

Sci., 128, pp 1035-1053, 1966 

[Revaud15] Revaud, J., Weinzaepfel, P., Harchaoui, Z. and Schmid, C., Epicflow: Edge-preserving 

interpolation of correspondences for optical flow. Proc. CVPR, 2015 

[Roberts65] Roberts, L. G., Machine Perception of Three-Dimensional Solids, Optical and Electro-

Optical Information Processing, MIT Press, pp 159-197, 1965 

[Rosin96] Rosin, P. L., Augmenting Corner Descriptors, Graphical Models and Image Processing, 

58(3), pp 286-294, 1996 

[Rosten06] Rosten, E., and Drummond, T., Machine learning for high-speed corner detection, Proc. 

ECCV, pp. 430-443, 2006 

[Rublee11] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., ORB: An efficient alternative 

to SIFT or SURF, Proc. ICCV, pp. 2564-2571, 2011 

[Smith97] Smith, S. M. and Brady, J. M., SUSAN - A New Approach to Low Level image 

Processing. Int. Journal of Computer Vision, 23(1), pp 45-78, May 1997 

[Sobel70] Sobel, I. E., Camera Models and Machine Perception, PhD Thesis, Stanford Univ., 1970 

[Spacek86] Spacek, L. A., Edge Detection and Motion Detection, Image and Vision Computing, 

4(1), pp 43-56, 1986 

[Sun14] Sun, D., Roth, S. and Black, M. J., A quantitative analysis of current practices in optical 

flow estimation and the principles behind them. Int. J. Computer Vision, 106(2), pp.115-137, 

2014 

[Sun18] Sun, Y., Hare, J. S. and Nixon, M. S., Detecting heel strikes for gait analysis through 

acceleration flow. IET Computer Vision, 12(5), pp 686-692, 2018 

[Torre86] Torre, V., and Poggio, T. A., On Edge Detection, IEEE Trans. on PAMI, 8(2), pp 147-

163, 1986 

[Tuytelaars07] Tuytelaars, T., and Mikolajczyk, K., Local Invariant Feature Detectors: A Survey, 

Foundations and Trends in Computer Graphics and Vision, 3(3), pp 177–280, 2007 

[Ulupinar90] Ulupinar, F., and Medioni, G., Refining Edges Detected by a LoG Operator, CVGIP, 

51, pp 275-298, 1990 

[Venkatesh89] Venkatesh, S., and Owens, R. A. An Energy Feature Detection Scheme. Proc. of an 

International Conference on Image Processing, pp 553–557, Singapore, 1989 

[Venkatesh95] Venkatesh, S, and Rosin, P. L., Dynamic Threshold Determination by Local and 

Global Edge Evaluation, Graphical Models and Image Processing, 57(2), pp146-160, 1995 

[Vliet89] Vliet, L. J., and Young, I. T., A Nonlinear Laplacian Operator as Edge Detector in Noisy 

Images, CVGIP, 45, pp 167-195, 1989 

[Wang18] Wang, W., Shen, J. and Shao, L., Video salient object detection via fully convolutional 

networks. IEEE Trans. on IP, 27(1), pp.38-49, 2018 



Low-Level Feature Extraction 

 189 

[Weinzaepfel13] Weinzaepfel, P., Revaud, J., Harchaoui, Z. and Schmid, C., DeepFlow: Large 

displacement optical flow with deep matching. Proc. ICCV, pp. 1385-1392, 2013 

[Yitzhaky03] Yitzhaky, Y., and Peli, E., A Method for Objective Edge Detection Evaluation and 

Detector Parameter Selection, IEEE Trans. on TPAMI, 25(8), pp 1027-1033, 2003 

[Zabir94] Zabir, R., and Woodfill, J., Non_parametric Local Transforms for Computing Visual 

Correspondence, Proc. ECCV, pp 151-158,1994 

[Zheng04] Zheng, Y., Nixon, M. S., and Allen R., Automatic Segmentation of Lumbar Vertebrae 

in Digital Videofluoroscopic Imaging, IEEE Trans. on Medical Imaging, 23(1), pp 45-52 2004 

[Zheng18] Zheng, L., Yang, Y. and Tian, Q., SIFT meets CNN: A decade survey of instance 

retrieval, IEEE Trans. on PAMI, 40(5), pp.1224-1244, 2018 

  



Feature Extraction and Image Processing in Computer Vision 

 190 

7×7 Sobel, 134 

acceleration, 193 

analysis, 129 

aperture, 187 

autocorrelation, 167 

averaging, 131 

backward, 164 

band-pass, 150 

Binary Robust Invariant Scalable Keypoints, 

177 

BRISK, 177 

Canny, 138, 153, 155 

CBIR, 175 

Content Based Image Retrieval, 175 

context aware saliency, 179 

contrast, 127 

Convolutional Neural Networks 

keypoint, 177 

corner, 160 

curvature, 160, 161, 163, 167 

curvature function, 161 

DeepFlow, 192 

derivative of Gaussian, 138 

edge, 125, 127, 130, 131, 135 

Epicflow, 192 

Evaluating Optical Flow, 195 

Evaluation Optical Flow, 195 

FAST, 176 

Fast Retina Keypoint, 177 

fast saliency, 182 

Features from Accelerated Segment Test, 176 

first, 127, 153 

First order, 145 

forward, 164 

Fourier, 136 

FREAK, 177 

Gaussian, 138, 139, 147 

Gaussian (LoG) operator, 147 

general, 133 

GIST, 177 

high-pass, 136 

histogram contrast saliency, 181 

horizontal, 127, 187 

hysteresis, 139, 141, 142 

inverse Fourier transform, 155 

Laplacian, 146, 147 

line, 164 

Locally Contrasting Keypoints, 177 

LOCKY, 177 

low-level, 125 

low-pass, 136, 150 

Marr-Hildreth, 147, 153 

Mexican, 147 

Middlebury, 194 

motion, 183 

moving object, 183 

non-maximum, 138, 139, 140 

optical, 183, 186 

optical flow evaluation, 194 

optimal, 138 

ORB, 177 

Oriented FAST and Rotated BRIEF, 177 

performance, 178 

Petrou, 152 

Phase Congruency, 154 

planar, 161 

Prewitt, 131, 153 

Roberts, 129 

saliency, 179 

saliency deep learning, 182 

second, 145 

second order, 145 

smoothness, 188 

Sobel, 132, 135, 139, 153 

Spacek, 153 

STAR, 177 

template, 132, 136 

uniform, 128, 143 

vertical, 127, 187 

wavelet, 157 

zero-crossing, 145, 149 

 

  



Low-Level Feature Extraction 

 191 

  



Feature Extraction and Image Processing in Computer Vision 

 192 

4  Low-Level Feature Extraction (including Edge Detection) 125 

4.1 Overview ........................................................................................................................... 125 

4.2   Edge Detection ................................................................................................................ 127 

4.2.1      First Order Edge Detection Operators ............................................................................. 127 

4.2.1.1   Basic Operators ............................................................................................................... 127 

4.2.1.2   Analysis of the Basic Operators ....................................................................................... 129 

4.2.1.3   Prewitt Edge Detection Operator .................................................................................... 131 

4.2.1.4   Sobel Edge Detection Operator ....................................................................................... 132 

4.2.1.5   The Canny Edge Detector ................................................................................................ 138 

4.2.2 Second Order Edge Detection Operators .............................................................................. 145 

4.2.2.1   Motivation ........................................................................................................................ 145 

4.2.2.2   Basic Operators: The Laplacian ...................................................................................... 146 

4.2.2.3    The Marr-Hildreth Operator .......................................................................................... 147 

4.2.3 Other Edge Detection Operators ........................................................................................... 151 

4.2.4  Comparison of Edge Detection Operators ........................................................................... 153 

4.2.5  Further Reading on Edge Detection ..................................................................................... 153 

4.3  Phase Congruency............................................................................................................ 154 

4.4  Localised Feature Extraction ........................................................................................... 159 

4.4.1  Detecting Image Curvature (Corner Extraction) .................................................................. 160 

4.4.1.1  Definition of Curvature .............................................................................................. 160 

4.4.1.2  Computing Differences in Edge Direction ................................................................. 161 

4.4.1.3  Measuring Curvature by Changes in Intensity (Differentiation) ............................... 163 

4.4.1.4  Moravec and Harris Detectors ................................................................................... 167 

4.4.1.5  Further Reading on Curvature ................................................................................... 170 

4.4.2  Feature Point Detection; Region/Patch Analysis ................................................................. 171 

4.4.2.1 Scale Invariant Feature Transform (SIFT) ................................................................. 171 

4.4.2.2 Speeded Up Robust Features (SURF) ......................................................................... 174 

4.4.2.3 FAST, ORB, FREAK, LOCKY and other keypoint detectors ....................................... 175 

4.4.2.4 Other Techniques and Performance Issues ................................................................. 178 

4.4.3  Saliency ................................................................................................................................ 179 

4.4.3.1 Basic Saliency .............................................................................................................. 179 

4.4.3.2 Context Aware Saliency ............................................................................................... 179 

4.4.3.3 Other Saliency Operators ............................................................................................ 181 

4.5   Describing Image Motion ............................................................................................... 183 

4.5.1  Area-based approach .............................................................. Error! Bookmark not defined. 

4.5.2  Differential approach ............................................................. Error! Bookmark not defined. 

4.5.3  Recent Developments: Deepflow, Epicflow and extensions . Error! Bookmark not defined. 

4.5.4  Analysis of Optical Flow ....................................................... Error! Bookmark not defined. 



Low-Level Feature Extraction 

 193 

4.6  Further Reading ............................................................................................................... 184 

4.7  Chapter 4 References ....................................................................................................... 184 

 

 

 

 



Feature Extraction and Image Processing in Computer Vision 

 202 

5    High-Level Feature Extraction: Fixed Shape Matching 

5.1  Overview 

igh-level feature extraction concerns finding shapes and objects  in computer images. To 

be able to recognise human faces automatically, for example, one approach is to extract 

the component features. This requires extraction of, say, the eyes, the ears and the nose, 

which are the major face features. To find them, we can use their shape: the white part of 

the eyes is ellipsoidal; the mouth can appear as two lines, as do the eyebrows. Alternatively, we can 

view them as objects and use the low-level features to define collections of points, which define the 

eyes, nose and mouth, or even the whole face. This feature extraction process can be viewed as 

similar to the way we perceive the world: many books for babies describe basic geometric shapes 

such as triangles, circles and squares. More complex pictures can be decomposed into a structure 

of simple shapes. In many applications, analysis can be guided by the way the shapes are arranged. 

For the example of face image analysis, we expect to find the eyes above (and either side of) the 

nose and we expect to find the mouth below the nose.  

In feature extraction, we generally seek invariance properties so that the extraction result does 

not vary according to chosen (or specified) conditions. This implies finding objects, whatever their 

position, their orientation or their size. That is, techniques should find shapes reliably and robustly 

whatever the value of any parameter that can control the appearance of a shape. As a basic invariant, 

we seek immunity to changes in the illumination level: we seek to find a shape whether it is light 

or dark. In principle, as long as there is contrast between a shape and its background, the shape can 

be said to exist, and can then be detected. (Clearly, any computer vision technique will fail in 

extreme lighting conditions; you cannot see anything when it is completely dark.) Following 

illumination, the next most important parameter is position: we seek to find a shape wherever it 

appears. This is usually called position-, location- or translation-invariance. Then, we often seek 

to find a shape irrespective of its rotation (assuming that the object or the camera has an unknown 

orientation): this is usually called rotation- or orientation-invariance. Then, we might seek to 

determine the object at whatever size it appears, which might be due to physical change, or to how 

close the object has been placed to the camera. This requires size- or scale-invariance. These are 

the main invariance properties we shall seek from our shape extraction techniques. However, nature 

(as usual) tends to roll balls under our feet: there is always noise in images. Also since we are 

concerned with shapes, note that there might be more than one in the image. If one is on top of the 

other it will occlude, or hide, the other, so not all the shape of one object will be visible.  

But before we can develop image analysis techniques, we need techniques to extract the shapes 

and objects. Extraction is more complex than detection, since extraction implies that we have a 

description of a shape, such as its position and size, whereas detection of a shape merely implies 

knowledge of its existence within an image. This Chapter concerns shapes that are fixed in shape 

(such as a segment of bone in a medical image); the following Chapter concerns shapes, which can 

deform (like the shape of a walking person). 

The techniques presented in this chapter are outlined in Table 5.1. We first consider whether we 

can detect objects by thresholding. This is only likely to provide a solution when illumination and 

lighting can be controlled, so we then consider two main approaches: one is to extract constituent 

parts; the other is to extract constituent shapes. We can actually collect and describe low-level 

features described earlier. In this, wavelets can provide object descriptions, as can Scale-Invariant 

Feature Transform SIFT and distributions of low-level features. In this way we represent objects as 

a collection of interest points, rather than using shape analysis. Conversely, we can investigate the 

H 
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use of shape: template matching is a model-based approach in which the shape is extracted by 

searching for the best correlation between a known model and the pixels in an image. There are 

alternative ways in to compute the correlation between the template and the image. Correlation can 

be implemented by considering the image or frequency domains and the template can be defined 

by considering intensity values or a binary shape. The Hough transform defines an efficient 

implementation of template matching for binary templates. This technique is capable of extracting 

simple shapes such as lines and quadratic forms as well as arbitrary shapes. In any case, the 

complexity of the implementation can be reduced by considering invariant features of the shapes 

 

Main topic Sub topics Main points 

Pixel 

operations 

How we detect features at a pixel level. 

What are the limitations and advantages of 

this approach. Need for shape information. 

Thresholding. Differencing. 

Template 

matching 

Shape extraction by matching. Advantages 

and disadvantages. Need for efficient 

implementation. 

Template Matching. Direct and 

Fourier implementations. Noise 

and occlusion. 

Low level 

features 

Collecting low level features for object 

extraction and their descriptional bases.  

Frequency-based and parts-based 

approaches. Detecting distributions of 

measures. 

Wavelets and Haar wavelets. 

SIFT , SURF, BRIEF and ORB 

descriptions and Histogram of 

Oriented Gradients. 

Hough 

transform 

Feature extraction by matching. Hough 

transforms for conic sections. Hough 

transform for arbitrary shapes. Invariant 

formulations. Advantages in speed and 

efficacy. 

Feature extraction by evidence 

gathering. Hough transforms for 

lines, circles and ellipses. 

Generalised and Invariant Hough 

transforms. 

Table 5.1  Overview of Chapter 5 

 

5.2  Thresholding and Subtraction 

Thresholding is a simple shape extraction technique, as illustrated in Section 3.3.4, where the 

images could be viewed as the result of trying to separate the eye from the background. If it can be 

assumed that the shape to be extracted is defined by its brightness, then thresholding an image at 

that brightness level should find the shape. Thresholding is clearly sensitive to change in 

illumination: if the image illumination changes then so will the perceived brightness of the target 

shape. Unless the threshold level can be arranged to adapt to the change in brightness level, any 

thresholding technique will fail. Its attraction is simplicity: thresholding does not require much 

computational effort. If the illumination level changes in a linear fashion, using histogram 

equalisation will result in an image that does not vary. Unfortunately, the result of histogram 

equalisation is sensitive to noise, shadows and variant illumination: noise can affect the resulting 

image quite dramatically and this will again render a thresholding technique useless. Let us 

illustrate this by considering Figure 5.1 and let us consider trying to find either the ball, or the 

player, or both in Figure 5.1(a). Superficially, these are the brightest objects so one value of the 

threshold, Figure 5.1(b), finds the player’s top, shorts and socks, and the ball – but it also finds the 

text in the advertising and the goalmouth. When we increase the threshold, Figure 5.1(c), we lose 
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the advertising, parts of the player, but still find the goalmouth. Clearly we need to include more 

knowledge, or to process the image more. 

 

 

   

(a) image  (b) low threshold  (c) high threshold 

Figure 5.1 Extraction by Thresholding 

 

Thresholding after intensity normalisation (Section 3.3.2) is less sensitive to noise, since the 

noise is stretched with the original image, and cannot affect the stretching process by much. It is 

however still sensitive to shadows and variant illumination. Again, it can only find application 

where the illumination can be carefully controlled. This requirement is germane to any application 

that uses basic thresholding. If the overall illumination level cannot be controlled, it is possible to 

threshold edge magnitude data since this is insensitive to overall brightness level, by virtue of the 

implicit differencing process. However, edge data is rarely continuous and there can be gaps in the 

detected perimeter of a shape. Another major difficulty, which applies to thresholding the 

brightness data as well, is that there are often more shapes than one. If the shapes are on top of each 

other, one occludes the other and the shapes need to be separated.  

 

   

(a) image of walking subject (b) background  (c) after background 

subtraction and thresholding 

Figure 5.2  Shape Extraction by Subtraction and Thresholding 

 

An alternative approach is to subtract an image from a known background before thresholding. 

This assumes that the background is known precisely, otherwise many more details than just the 

target feature will appear in the resulting image; clearly the subtraction will be unfeasible if there 

is noise on either image, and especially on both. In this approach, there is no implicit shape 

description, but if the thresholding process is sufficient, it is simple to estimate basic shape 

parameters, such as position. 

The subtraction approach is illustrated in Figure 5.2. Here, we seek to separate or extract a 

walking subject from their background. When we subtract the background of Figure 5.2(b) from 

the image itself, we obtain most of the subject with some extra background just behind the subject's 
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head (this is due to the effect of the moving subject on lighting). Also, removing the background 

removes some of the subject: the horizontal bars in the background have been removed from the 

subject by the subtraction process.  These aspects are highlighted in the thresholded image, Figure 

5.2(c). It is not a particularly poor way of separating the subject from the background (we have the 

subject but we have chopped through his midriff) but it is not especially good either. So it does 

provide an estimate of the object, but an estimate that is only likely to be reliable when the lighting 

is highly controlled. (A more detailed study of separation of moving objects from their static 

background, including estimation of the background itself, is to be found in Chapter 9.) 

Even though thresholding and subtraction are attractive (because of simplicity and hence their 

speed), the performance of both techniques is sensitive to partial shape data, to noise, variation in 

illumination and to occlusion of the target shape by other objects. Accordingly, many approaches 

to image interpretation use higher level information in shape extraction, namely how the pixels are 

connected. This can resolve these factors. 

 

5.3  Template Matching  

5.3.1  Definition 

 

Template matching is conceptually a simple process. We need to match a template to an image, 

where the template is a sub-image that contains the shape we are trying to find. Accordingly, we 

centre the template on an image point and count how many points in the template matched those in 

the image. The procedure is repeated for the entire image and the point which led to the best match, 

the maximum count, is deemed to be the point where the shape (given by the template) lies within 

the image. 

 

 

 

 

 

 

(a) image containing shapes (b) template of target shape 

Figure 5.3   Illustrating Template Matching 

 

Consider that we want to find the template of Figure 5.3(b) in the image of Figure 5.3(a). The 

template is first positioned at the origin and then matched with the image to give a count that reflects 

how well the template matched that part of the image at that position. The count of matching pixels 

is increased by one for each point where the brightness of the template matches the brightness of 

the image. This is similar to the process of template convolution, illustrated earlier in Figure 3.11. 

The difference here is that points in the image are matched with those in the template, and the sum 

is of the number of matching points as opposed to the weighted sum of image data. The best match 
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which gives the maximum number of matching points is when the template is placed at the position 

where the target shape is matched to itself. Obviously, this process can be generalised to find, for 

example, templates of different size or orientation. In these cases, we have to try all the templates 

(at expected rotation and size) to determine the best match.    

Formally, template matching can be defined as a method of parameter estimation. The 

parameters define the position (and pose) of the template. We can define a template as a discrete 

function yx,T . This function takes values in a window. That is, the co-ordinates of the points 

  Wyx, . For example, for a 2 2  template we have the set of points         1,1,0,1,1,0,0,0W

. In general, a template can be defined by considering any property from an image. The example in 

Figure 5.4 shows templates defined by grey values, binary values and image edges. Other templates 

can also define colours or multispectral data. 

Let us consider that each pixel in the image 
,x yI is corrupted by additive Gaussian noise. The 

noise has a mean value of zero and the (unknown) standard deviation is  . Thus, the probability 

that a point in the template placed at co-ordinates  ji,  matches the corresponding pixel at position 

  Wyx, is given by the normal distribution 
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 (5.1) 

Since the noise affecting each pixel is independent, then the probability that the template is at 

position  ji,  is the combined probability of each pixel that the template covers. That is,  
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By substitution of Equation 5.1, we have that 
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where n is the number of pixels in the template. This function is called the likelihood function. 

Generally, it is expressed in logarithmic form to simplify the analysis. Notice that the logarithm 

scales the function, but it does not change the position of the maximum. Thus, by taking the 

logarithm the likelihood function is redefined as  
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In maximum likelihood estimation, we have to choose the parameter that maximises the likelihood 

function. That is, the positions that minimise the rate of change of the objective function 
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That is, 
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 (5.6) 

We can observe that these equations are also the solution of the minimisation problem given by 
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  
 
 



W

TI
yx

yxjyixe
,

2

,,min  (5.7) 

That is, maximum likelihood estimation is equivalent to choosing the template position that 

minimises the squared error (the squared values of the differences between the template points and 

the corresponding image points). The position where the template best matches the image is the 

estimated position of the template within the image. Thus, if you measure the match using the 

squared error criterion, then you will be choosing the maximum likelihood solution. This implies 

that the result achieved by template matching is optimal for images corrupted by Gaussian noise. 

(Note that the Central Limit Theorem suggests that noise experienced practically can be assumed 

to be Gaussian distributed, though many images appear to contradict this assumption.) Of course 

you can use other error criteria such as the absolute difference rather than the squared difference 

or, if you feel more adventurous, you might consider robust measures such as M-estimators.  

We can derive alternative forms of the squared error criterion by considering that Equation (5.7) 

can be written as  

  
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2 2

, , , ,
,

min 2x i y j x i y j x y x y
x y
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I I T T  (5.8) 

The last term does not depend on the template position  ji, . As such, it is constant and cannot be 

minimised. Thus, the optimum in this equation can be obtained by minimising 
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If the first term  
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is approximately constant, then the remaining term gives a measure of the similarity between the 

image and the template. That is, we can maximise the cross-correlation between the template and 

the image. Thus, the best position can be computed by 
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However, the squared term in Equation (5.10) can vary with position, so the match defined by 

Equation (5.11) can be poor. Additionally, the range of the cross-correlation is dependent on the 

size of the template and it is non-invariant to changes in image lighting conditions. Thus, in an 

implementation it is more convenient to use either Equation (5.7) or Equation (5.9) (in spite of 

being computationally more demanding than the cross-correlation in Equation 5.11). Alternatively, 

cross-correlation can be normalised as follows. We can rewrite Equation (5.9) as 
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Here the first term is constant and thus, the optimum value can be obtained by  
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In general, it is convenient to normalise the grey level of each image window under the template. 

That is, 
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where 
ji,I  is the mean of the pixels jyix  ,I  for points within the window (i.e.   Wyx, ) and T  

is the mean of the pixels of the template. An alternative form to Equation (5.14) is given by 

normalising the cross-correlation. This does not change the position of the optimum and gives an 

interpretation as the normalisation of the cross-correlation vector. That is, the cross-correlation is 

divided by its modulus. Thus, 
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However, this equation has a similar computational complexity to the original formulation in 

Equation (5.7).  

A particular implementation of template matching is when the image and the template are binary. 

In this case, the binary image can represent regions in the image or it can contain the edges. These 

two cases are illustrated in the example in Figure 5.4. The advantage of using binary images is that 

the amount of computation can be reduced. That is, each term in Equation (5.7) will take only two 

values: it will be one when yxjyix ,, TI  , and zero otherwise. Thus, Equation (5.7) can be 

implemented as 
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where the symbol   denotes the exclusive NOR operator. This equation can be easily 

implemented and requires significantly less resource than the original matching function. 

 

   

(a) grey level image (b) binary image (c) edge image 

   

(d) grey level template (e) binary template (f) edge template 

Figure 5.4 Examples of Grey Level, Binary and Edge Template Matching 

 

Template matching develops an accumulator space that stores the match of the template to the 

image at different locations; this corresponds to an implementation of Equation (5.7). It is called an 

accumulator, since the match is accumulated during application. Essentially, the accumulator is a 

two dimensional array that holds the difference between the template and the image at different 

positions. The position in the image gives the same position of match in the accumulator. 
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Alternatively, Equation (5.11) suggests that the peaks in the accumulator resulting from template 

correlation give the location of the template in an image: the co-ordinates of the point of best match. 

Accordingly, template correlation and template matching can be viewed as similar processes. The 

location of a template can be determined by either process. The binary implementation of template 

matching, Equation (5.16), usually is concerned with thresholded edge data. This equation will be 

reconsidered in the definition of the Hough transform, the topic of Section 5.5.  

Code 5.1 shows the implementation of template matching. The code uses an accumulator array, 

accumulator and the position of the template is given by its centre. The accumulator elements 

are incremented according to Equation (5.7) and the match for each position is stored in the array. 

The implementation inverts the value of the difference in Equation (5.7), so the best match can be 

shown as a peak in the accumulator. As such, after computing all the matches, the maximum 

element in the array defines the position where most pixels in the template matched those in the 

image. It is possible to implement a version of template matching without the accumulator array, 

by only storing the location of the minimum. This will give the same result and it requires less 

storage. However, this implementation will provide a result that cannot support later image 

interpretation and that might require knowledge of more than just the best match. 

 

function image = template_match(image,template) 

%get image dimensions 

[rows,cols]=size(image); 

%get template dimensions 

[trows,tcols]=size(template); 

%half of template rows is 

tr=floor(trows/2); 

%half of template cols is 

tc=floor(tcols/2); 

  

%set an output as black 

accum(1:rows,1:cols)=0; 

  

%then convolve the template 

for x = tc+1:cols-tc %address all columns except border 

    for y = tr+1:rows-tr %address all rows except border 

        sum=0; %initialise the sum 

        for iwin=1:tcols %address all points in the template 

            for jwin=1:trows 

                sum=sum+image(y+jwin-tr-1,x+iwin-tc-1)*... 

                           template(jwin,iwin); 

            end 

        end 

        accum(y,x)=sum; 

    end 

end 

  

%find the maximum 

biggest_vote=max(max(accum)); 

Code 5.1  Implementing Template Matching 

 

The results of applying the template matching procedure are illustrated in Figure 5.5. This figure 

shows the accumulators as images and as histograms. The height of the histogram corresponds to 

the value in the accumulator. This example shows the accumulator arrays for matching the images 

shown in Figure 5.4 with their respective templates. The white points in each image are at the co-

ordinates of the origin of the position where the template best matched the image (the maxima). 

Note that there is a border where the template has not been matched to the image data. At these 

border points, the template extended beyond the image data, so no matching has been performed. 

This is the same border as experienced with template convolution, Section 3.4.1. We can observe 
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that a clearer maximum is obtained, Figure 5.5(c), from the edge images in Figure 5.4. This is 

because for grey level and binary images, there is some match when the template is not exactly in 

the best position. In the case of edges, the count of matching pixels is less. 

Most applications require further degrees of freedom such as rotation (orientation), scale (size), 

or perspective deformations. Rotation can be handled by rotating the template, or by using polar 

co-ordinates; scale invariance can be achieved using templates of differing size. Having more 

parameters of interest implies that the accumulator space becomes larger; its dimensions increase 

by one for each extra parameter of interest. Position-invariant template matching, as considered 

here, implies a 2D parameter space, whereas the extension to scale and position invariant template 

matching requires a 3D parameter space. 

 

   

(a) for the grey level image (b) for the binary image (c) for the edge image 

  
 

(d) for the grey level image (e) for the binary image (f) for the edge image 

Figure 5.5 Accumulator Arrays from Template Matching 

 

The computational cost of template matching is large. If the template is square and of size mm  

and is matched to an image of size NN  , since the 2m  pixels are matched at all image points 

(except for the border) the computational cost is  22mNO . This is the cost for position invariant 

template matching. Any further parameters of interest increase the computational cost in proportion 

to the number of values of the extra parameters. This is clearly a large penalty and so a direct digital 

implementation of template matching is slow. Accordingly, this guarantees interest in techniques 

that can deliver the same result, but faster, such as using a Fourier implementation based on fast 

transform calculus. 

The main advantages of template matching are its insensitivity to noise and occlusion. Noise can 

occur in any image, on any signal – just like on a telephone line. In digital photographs, the noise 

might appear low, but in computer vision it is made worse by edge detection by virtue of the 

differencing (differentiation) processes. Likewise, shapes can easily be occluded or hidden: a 

person can walk behind a lamp post or illumination can also cause occlusion. The averaging 
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inherent in template matching reduces the susceptibility to noise; the maximisation process reduces 

susceptibility to occlusion.  

These advantages are shown in Figure 5.6 which illustrates detection in the presence of 

increasing noise. Here, we will use template matching to locate the region containing the vertical 

rectangle near the top of the image (so we are matching a binary template of a black template on a 

white background to the binary image). The lowest noise level is in Figure 5.6(a) and the highest is 

in Figure 5.6(c); the position of the origin of the detected rectangle is shown as a black cross in a 

white square. The position of the origin of the region containing the rectangle is detected correctly 

in Figure 5.6(a) and Figure 5.6(b) but incorrectly in the noisiest image, Figure 5.6(c). Clearly, 

template matching can handle quite high noise corruption. (Admittedly this is somewhat artificial: 

the noise would usually be filtered out by one of the techniques described in Chapter 3, but we are 

illustrating basic properties here.) The ability to handle noise is shown by correct determination of 

the position of the target shape, until the noise becomes too much and there are more points due to 

noise than there are due to the shape itself. When this occurs, the votes resulting from the noise 

exceed those occurring from the shape, and so the maximum is not found where the shape exists.  

 

   

(a) detection (of the black 

rectangle) in some noise 

(b) detection in a lot of noise (c) detection in very much 

noise (failed) 

Figure 5.6 Template Matching in Noisy Images 

 

Occlusion is shown by placing a grey bar across the image; in Figure 5.7(a) the bar does not occlude 

(or hide) the target rectangle whereas in Figure 5.7(c) the rectangle is completely obscured. As with 

performance in the presence of noise, detection of the shape fails when the votes occurring from 

the shape exceed those from the rest of the image (the non-shape points), and the cross indicating 

the position of the origin of the region containing the rectangle is drawn in completely the wrong 

place. This is what happens when the rectangle is completely obscured in Figure 5.7(c). 
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(a) detection (of the black 

rectangle) in no occlusion 

(b) detection in some 

occlusion 

(c) detection in complete 

occlusion (failed) 

Figure 5.7 Template Matching in Occluded Images 

 

So it can operate well, with practical advantage. We can include edge detection to concentrate on a 

shape’s borders. Its main problem is still speed: a direct implementation is slow, especially when 

handling shapes that are rotated or scaled (and there are other implementation difficulties too). 

Recalling that from Section 3.4.2 that template convolution can be speeded up by using the Fourier 

transform, let us see if that can be used here too. 

5.3.2  Fourier Transform Implementation 

We can implement template matching via the Fourier transform by using the duality between 

convolution and multiplication, which was discussed earlier in Section 3.4.4. This duality 

establishes that a multiplication in the space domain corresponds to a convolution in the frequency 

domain and vice versa. This can be exploited for faster computation by using the frequency domain, 

given the Fast Fourier Transform algorithm. Thus, in order to find a shape we can compute the 

cross-correlation as a multiplication in the frequency domain. However, the matching process in 

Equation (5.11) is actually correlation (Section 2.3), not convolution. Thus, we need to express the 

correlation in terms of a convolution.  This can be done as follows. First, we can rewrite the 

correlation (denoted by  ) in Equation (5.11) as  
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where ixx   and jyy  . Convolution (denoted by * ) is defined as 
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Thus, in order to implement template matching in the frequency domain, we need to express 

Equation (5.17) in terms of Equation (5.18). This can be achieved by considering that the correlation 
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where 

 yx  ,TT  (5.20) 

That is, correlation is equivalent to convolution when the template is changed according to Equation 

(5.20). This equation reverses the co-ordinate axes and it corresponds to a horizontal and a vertical 

flip.  

In the frequency domain, convolution corresponds to multiplication. As such, we have that 

Equation (5.19) can be implemented by 

  )()(1
TITITI    (5.21) 

where   denotes Fourier transformation as in Chapter 2 (and calculated by the FFT) and  1 

denotes the inverse FFT. Note that the multiplication operator actually operates point-by-point, so 

each point is the product of the pixels at the same position in each image (in Matlab the operation 

is .*). This is computationally faster than its direct implementation, given the speed advantage of 

the FFT. There are two ways to implement this equation. In the first approach, we can compute T  
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by flipping the template and then computing its Fourier transform )(T . In the second approach, 

we compute the transform of )(Τ  and then we compute its complex conjugate. That is, 

  *)()( TT   (5.22) 

where  *  denotes the complex conjugate of the transform data (yes, we agree it’s an unfortunate 

symbol clash with convolution, but they are both standard symbols). So conjugation of the 

transform of the template implies that the product of the two transforms leads to correlation. (Since 

this product is point-by-point the two images/ matrices need to be of the same size.) That is, 

   *1 )()(* TITITI    (5.23) 

For both implementations, Equations (5.21) and (5.23) will evaluate the match and, more quickly 

for large templates than by direct implementation of template matching (as per Section 3.4). Note 

that one assumption is that the transforms are of the same size, even though the template’s shape is 

usually much smaller than the image. There is actually a selection of approaches; a simple solution 

is to include extra zero values (zero-padding) to make the image of the template the same size as 

the image.  

Code 5.2 illustrates the implementation of template matching by convolution in the image 

domain. In this implementation the input image is padded to include the size of the template. Figure 

5.8(a) shows the padding pixels in black. Padding is not necessary when computing convolution in 

the image domain, but it is included so the results can be compared with the computation of the 

convolution in the frequency domain in Code 5.3. The main loop in Code 5.2 computes the error 

criterion in Equation (5.8). The code separates the computation of the correlation terms and those 

terms which are squared. The term which is squared is computed separately so it can be used later 

in Code 5.3. An example of the result of the template matching by convolution in the image domain 

is shown in Figure 5.8(d). The white point in the image defines the maximum value and indicates 

the position of the template. The peak is more evident in Figure 5.8(g) where the accumulator is 

shown as a histogram.  

 

# Pad input  

inputPad = createImageF(widthPad, heightPad) 

for x,y in itertools.product(range(0, width), range(0, height)): 

    inputPad[y,x] = inputImage[y,x]  

 
# Compute correlation in image domain sum of square differences  

squaredTerm = createImageF(widthPad, heightPad) 

corrImage = createImageF(widthPad, heightPad) 

for x,y in itertools.product(range(0, widthPad), range(0, heightPad)): 

    for w,h in itertools.product(range(-widthTemplate+1,1),                       \ 

                                 range(-heightTemplate+1,1)): 

        p, q = x+w, y+h 

        if p >=0 and q>=  0 and p < width and q < height:   

            squaredTerm[y,x] += inputPad[q,p] * inputPad[q,p] 

            corrImage[y,x] += 2.0 * templatePad[h+heightTemplate,w+widthTemplate] \ 

                                   * inputPad[q,p]        

Code 5.2  Implementing Convolution in the Image Domain 

 

Code 5.3 illustrates the computation of template matching by convolution in the frequency 

domain. Similar to Code 5.2, the input image is padded. In this case, the template is also rotated 

and padded according to Equation (5.19). Figure 5.8(b) shows the rotated and padded template. The 

implementation in Code 5.3 computes the Fourier coefficients of the image and of the template and 

it stores them in the arrays imageCoeff and templateCoeff. These coefficients are then used 

to the compute the summation in Equation (5.19). The summation is stored in the resultCoeff 
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array. Notice that the summation computes the convolution since the template has been rotated. The 

power spectrum of the convolution is shown in Figure 5.8(c). This corresponds to the frequency 

representation of the convolution. The function reconstruction obtains the image 

representation of the convolution by reconstructing the image from the resultCoeff array. 

Figures 5.8(e) show the result of the Frequency domain convolution. Notice that the best match is 

located, but the peak is less evident than the peak in Figure 5.8(d). In order to make the convolution 

equivalent to the sum of squared differences, the code adds the quadratic term computed in Code 

5.2. The result of the summation is shown in Figures 5.8(f) and 5.8(i). When the quadratic term is 

included, then the results are equivalent to the results in Figures 5.8(a) and 5.8(b). The only 

difference is how the convolution is computed (i.e., in the image or in the frequency domain). In 

practice the computation in the frequency domain is more expensive and the summation in the 

image domain is simpler to implement and it can be easily organized in a parallel way, thus the 

image domain convolutions are generally preferred in applications. Notice that the results contain 

several small local maxima (in white). This can be explained by the fact that the shape can partially 

match several patterns in the image. Also we can see that, in contrast to the computation in the 

image domain, the implementation in the frequency domain does not have any border. This is due 

to the fact that Fourier theory assumes picture replication to infinity.  

Should we seek scale invariance, to find the position of a template irrespective of its size, then 

we need to formulate a set of templates that range in size between the maximum and minimum 

expected variation. Each of the templates of differing size is then matched by frequency domain 

multiplication. The maximum frequency domain value, for all sizes of template, indicates the 

position of the template and, naturally, gives a value for its size. This can of course be a rather 

lengthy procedure when the template ranges considerably in size. 

 

# Pad and invert template 

templatePadFlip = createImageF(widthPad, heightPad) 

for x,y in itertools.product(range(0, widthTemplate), range(0, heightTemplate)): 

    templatePadFlip[y,x] = templateImage[heightTemplate-y-1, widthTemplate-x-1] 

 

# Compute Fourier coefficients  

imageCoeff, maxFrequencyW, maxFrequencyH = computeCoefficients(inputPad)  

templateCoeff, _, _ = computeCoefficients(templatePadFlip) 

 

# Frequency domain multiplication defines convolution is space domain 

resultCoeff = createImageF(1 + 2 * maxFrequencyW ,1 + 2 * maxFrequencyH , 2) 

for kw,kh in itertools.product(range(-maxFrequencyW, maxFrequencyW + 1),          \ 

                               range(-maxFrequencyH, maxFrequencyH + 1)): 

    w = kw + maxFrequencyW  

    h = kh + maxFrequencyH 

    resultCoeff[h,w][0] = (imageCoeff[h,w][0] * templateCoeff[h,w][0] -           \ 

                           imageCoeff[h,w][1] * templateCoeff[h,w][1]) 

    resultCoeff[h,w][1] = (imageCoeff[h,w][1] * templateCoeff[h,w][0] +           \ 

                           imageCoeff[h,w][0] * templateCoeff[h,w][1])                                                            

# Inverse Fourier transform   

reconstructedResult = reconstruction(resultCoeff) 

 

# Add square term to define an operator equivalent to SSD 

for x,y in itertools.product(range(0, widthPad), range(0, heightPad)):   

    reconstructedResult[y,x] = -squaredTerm[y,x] + 2.0 * reconstructedResult[y,x] 

 

Code 5.3  Implementing Convolution by the Frequency Domain 

 

There are several further difficulties in using the transform domain for template matching in 

discrete images. If we seek rotation invariance, then an image can be expressed in terms of its polar 

co-ordinates. Discretisation gives further difficulty since the points in a rotated discrete shape can 

map imperfectly to the original shape. This problem is better manifest when an image is scaled in 
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size to become larger. In such a case, the spacing between points will increase in the enlarged image. 

The difficulty is how to allocate values for pixels in the enlarged image that are not defined in the 

enlargement process. There are several interpolation approaches, but it can often appear prudent to 

reformulate the original approach. Further difficulties can include the influence of the image 

borders: Fourier theory assumes that an image replicates spatially to infinity. Such difficulty can be 

reduced by using window operators, such as the Hamming or the Hanning windows. These 

difficulties do not obtain for optical Fourier transforms and so using the Fourier transform for 

position-invariant template matching is often confined to optical implementations. 

 

   

(a) input image padded  (b) template padded (c) convolution power 

   

(d) sum of squared 

differences 

(e) convolution in frequency 

domain 

(f) convolution in (e) plus 

squared term  

   

(g) sum of squared differences (h) convolution in frequency 

domain 

(i) convolution in (e) plus 

squared term 

Figure 5.8 Template Matching by Fourier Transformation 

 

5.3.3   Discussion of Template Matching 

 

The advantages associated with template matching are mainly theoretical since it can be very 

difficult to develop a template matching technique that operates satisfactorily. The results presented 

here have been for position invariance only. This can cause difficulty if invariance to rotation and 

scale is also required. This is because the template is stored as a discrete set of points. When these 
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are rotated, gaps can appear due to the discrete nature of the co-ordinate system. If the template is 

increased in size then again there will be missing points in the scaled-up version. Again, there is a 

frequency domain version that can handle variation in size, since scale invariant template matching 

can be achieved using the Mellin transform [Bracewell86]. This avoids using many templates to 

accommodate the variation in size by evaluating the scale-invariant match in a single pass. The 

Mellin transform essentially scales the spatial co-ordinates of the image using an exponential 

function. A point is then moved to a position given by a logarithmic function of its original co-

ordinates. The transform of the scaled image is then multiplied by the transform of the template. 

The maximum again indicates the best match between the transform and the image. This can be 

considered to be equivalent to a change of variable. The logarithmic mapping ensures that scaling 

(multiplication) becomes addition. By the logarithmic mapping, the problem of scale invariance 

becomes a problem of finding the position of a match.   

The Mellin transform only provides scale-invariant matching. For scale and position invariance, 

the Mellin transform is combined with the Fourier transform, to give the Fourier-Mellin transform. 

The Fourier-Mellin transform has many disadvantages in a digital implementation, due to the 

problems in spatial resolution though there are approaches to reduce these problems [Altmann84], 

as well as the difficulties with discrete images experienced in Fourier transform approaches. 

Again, the Mellin transform appears to be much better suited to an optical implementation 

[Casasent77], where continuous functions are available, rather than to discrete image analysis. A 

further difficulty with the Mellin transform is that its result is independent of the form factor of the 

template. Accordingly, a rectangle and a square appear to be the same to this transform. This implies 

a loss of information since the form factor can indicate that an object has been imaged from an 

oblique angle. There has been some interest in log-polar mappings for image analysis (e.g. 

[Zokai05]). 

So there are innate difficulties with template matching whether it is implemented directly, or by 

transform operations. For these reasons, and because many shape extraction techniques require 

more than just edge or brightness data, direct digital implementations of feature extraction are 

usually preferred. This is perhaps also influenced by the speed advantage that one popular technique 

can confer over template matching. This is the Hough transform, which is covered in Section 5.5. 

Before that, we shall consider techniques which consider object extraction by collections of low 

level features. These can avoid the computational requirements of template matching by treating 

shapes as collections of features.  

 

5.4  Feature Extraction by Low Level Features 

 

There have been many approaches to feature extraction which combine a variety of features. It is 

possible to characterise objects by measures that we have already developed, by low level features 

local features (such edges and corners), and by global features (such as colour). Later we shall find 

these can be grouped to give structure or shape (in this Chapter and the next), and appearance (called 

texture, Chapter 8). The drivers for the earlier approaches which combine low level features are the 

need to be able to search databases for particular images. This is known as image retrieval (Section 

4.4.2) and in content-based retrieval that uses techniques from image processing and computer 

vision there are approaches that combine a selection of features [Smeulders00]. Alternative search 

strategies include using text or sketches and these are not of interest in the domain of this book. 

One approach is to develop features which include and target human descriptions and use 

techniques from machine intelligence [Datta 08], which also implies understanding of semantics 

(how people describe images) as compared with the results of automated image analysis.  
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There is also interest in recognising objects, and hence images, by collecting descriptors for local 

features [Mikolajczyk05]. These can find application not just in image retrieval but also in stereo 

computer vision, navigating robots by computer vision and when stitching together multiple images 

to build a much larger panorama image. Much this material relates to whole applications and 

therefore can rely not just on collecting local features, on shape, on texture and on classification. In 

these respects in this Chapter we shall provide coverage of some of the basic ways to combine low-

level feature descriptions. Essentially, these approaches show how techniques that have already 

been covered can be combined in such a way as to achieve a description by which an object can be 

recognised. The approaches tend to rely on the use of machine learning approaches to determine 

the relevant data (to filter it so as to understand its structure) so the approaches are described in 

basis only here and the classification approaches are described later, in Chapter 12. 

 

 

5.4.1  Appearance-Based Approaches 

 

5.4.1.1  Object Detection by Templates 

 

The Viola Jones approach essentially uses the form of Haar wavelets defined earlier in Section 

2.7.3.2 as a basis for object detection [Viola01] which was later extended to be one of the most 

popular techniques for detecting human faces in images [Viola04]. Using rectangles to detect image 

features is an approximation, as there are features which can describe curved structure (derived 

using Gabor wavelets for example). It is however a fast approximation, since the features can be 

detected using the integral image approach. If we are to consider the face image in Figure 5.9(a) 

then the eyes are darker than the cheeks which are immediately below them, and the eyes are also 

darker than the bridge of the nose. As such, if we match the template in Figure 5.9(b) (this is the 

inverted form of the template in Figure 2.32(c)), then superimposing this template on the image at 

the position where it best matches the face leads to the image of Figure 5.9(c). The result is not too 

surprising, since it finds two dark parts between which there is a light part, and only the eyes and 

the bridge of the nose fit this description. (We could of course have a nostril template but a) you 

might be eating your dinner and b) when you look closely, quite a lot of the image fits the 

description “two small dark blobs with a light bit in the middle” – we can successfully find the eyes 

since they are a large structure fitting the template well.) 

  

 

 

 

(a) face image (b) template for eyes and 

nose bridge 

(c) best match or template (b) 

to image (a)  

Figure 5.9  Object Extraction by  Haar Wavelet-based Features 

 

In this way we can define a series of templates (those in Figure 2.29) and match them to the image. 

In this way we can find the underlying shape. We need to sort the results to determine which are 

the most important and which collection best describes the face. That is where the approach 

advances to machine learning, which comes later in Chapter 12. For now, we rank the filters as to 
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their importance and then find shapes by using a collection of these low level features. The original 

technique was phrased around detecting objects [Viola01] and later phrased around finding human 

faces in particular [Viola04], and it has now become one of the stock approaches to detecting faces 

automatically within image data. 

There are limitations to this approach, naturally. The use of rectangular features allows fast 

calculation, but does not match well structures that have a smoother contour. There are very many 

features possible in templates of any reasonable size, and so the set of features must be pruned so 

that the best are selected, and that is where the machine learning processes are necessary. In turn 

this implies that the feature extraction process needs training (in features and in data) – and that is 

similar indeed to human vision. There are demonstration versions of the technique and 

improvements include the use of rotated Haar features [Lienhart03] as well as inspiring many of 

the later approaches that collect parts for recognition. Should you be interested in more recent 

approaches to face detection, [Zafeiriou15] is well worth a look. 
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Figure 5.10   Applying Gabor Wavelets in Ear Biometrics [Arbab-Zavar11] 

 

5.4.1.2  Object Detection by Combinations of Parts 

 

There have been many approaches which apply wavelets, and ones which are more complex than 

Haar wavelets, to detect objects by combinations of parts. These approaches allow for greater 

flexibility in the representation of the part since the wavelet can capture frequency, orientation and 

position (thus incurring the cost of computational complexity). A major advantage is that scale can 

be used, and objects can exist at, or persist over, a selection of scales. One such approach used 

wavelets as a basis for detecting people and cars [Schneiderman04] and even a door handle, thus 

emphasising generality of the approach. As with the Viola-Jones approach, this method requires 

deployment of machine learning techniques which then involves training. In this method the 

training occurs over different viewpoints to factor out the subject’s – or object’s – pose. The method 

groups input data into sets, and each set is a part. For a human face, the parts include the eyes, nose 
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and mouth and some un-named, but classified face regions, and these parts are (statistically) 

interdependent in most natural objects. Then machine learning techniques are used to maximise the 

likelihood of finding the parts correctly. Highly impressive results have been provided, though 

again the performance of the technique depends on training as well as on other factors. The main 

point of the technique here, is that wavelets can allow for greater freedom when representing an 

object as a collection of parts. 

In our own research we have used Gabor wavelets in ear biometrics, where we can recognise a 

person’s identity by analysis of the appearance of the ear [Hurley08]. It might be the ugliest 

biometric, but it also appears the most immune to effects of aging (except to enlarge): ears are fully 

formed at birth and change little throughout life, unlike the human face which changes rapidly as 

children grow teeth and then the general decline includes wrinkles and a few sags (unless a 

surgeon’s expertise intervenes). In a way ears are like fingerprints, but the features are less clear. 

In our own research in biometrics, we have used Gabor wavelets to capture the ear’s features 

[Arbab-Zavar11] in particular those relating to smooth curves. To achieve rotational invariance (in 

case a subject’s head was tilted when the image was acquired), a radial scan was taken based on an 

ear’s centre point, Figure 5.10(a), deriving the two transformed regions in Figure 5.10(b) and Figure 

5.10(d) which are the same region for different images of the same ear. Then, these regions are 

transformed using a Gabor wavelet approach for which the real parts of the transform at two scales 

are shown in Figures 5.10(c) and Figure 5.10(e). Here, the detail is preserved at the short 

wavelength and the larger structures are detected at longer wavelengths. In both cases the prominent 

smooth structures are captured by the technique, leading to successful recognition of the subjects. 

 

 

5.4.2  Distribution-Based Descriptors 

 

5.4.2.1  Description by Interest Points (SIFT, SURF, BRIEF) 

Lowe’s Scale Invariant Feature Transform (SIFT) [Lowe04], Section 4.4.2.1, actually combines a 

scale invariant region detector with a descriptor which is based on the gradient distribution in the 

detected regions. The approach not only detects interest points but also provides a description for 

recognition purposes. The descriptor is represented by a 3D histogram of gradient locations and 

orientations and is created by first computing the gradient magnitude and orientation at each image 

point within the 8 × 8 region around the keypoint location, as shown in Figure 5.11. These values 

are weighted by a Gaussian windowing function, indicated by the overlaid circle in Figure 5.11(a) 

wherein the standard deviation is chosen according the number of samples in the region (its width). 

This avoids fluctuation in the description with differing values of the keypoint’s location and 

emphasises less the gradients that are far from the centre. These samples are then accumulated into 

orientation histograms summarizing the contents of the four 4 × 4 sub regions, as shown in Figure 

5.11(b), with the length of each arrow corresponding to the sum of the gradient magnitudes near 

that direction within the region. This involves a binning procedure as the histogram is quantised 

into a smaller number of levels (here eight compass directions are shown). The descriptor is then a 

vector of the magnitudes of the elements at each compass direction and in this case has 4 × 8 = 32 

elements. This figure shows a 2 × 2 descriptor array derived from an 8 × 8 set of samples and other 

arrangements are possible, such as 4 × 4 descriptors derived from a 16 × 16 sample array giving a 

128 element descriptor. The final stage is to normalise the magnitudes so the description is 

illumination invariant.  Given that SIFT has detected the set of keypoints and we have descriptions 

attached to each of those keypoints, we can then describe a shape by using the collection of parts 

detected by the SIFT technique. There is a variety of parameters that can be chosen within the 

approach, and the optimisation process is ably described [Lowe04] along with demonstration that 

the technique can be used to recognise objects, even in the presence of clutter and occlusion. An 
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improvement called RootSIFT  [Arandjelović12] later changed the way distance/ similarity was 

measured to improve descriptional capability and now appears to be in routine use. 

 

 

                    

              

            

            

            

              

            

            

            

                    

(a) image gradients (b) keypoint descriptor 

Figure 5.11   SIFT Keypoint Descriptor [Lowe04] 

 

The SURF descriptor [Bay08], Section 4.4.2.2, describes the distribution of the intensity content 

within the interest point neighbourhood, similar to SIFT (both approaches combine detection with 

description). In SURF, first a square region is constructed which is centred on an interest point and 

oriented along the detected orientation (detected via the Haar wavelets). Then, the description is 

derived from the Haar wavelet responses within the sub windows and the approach argues the 

approach “reduces the time for feature computation and matching, and has proven to simultaneously 

increase the robustness”. 

The SIFT and SURF descriptors are large being vectors of 128 and 64 elements, respectively, 

and this can require much storage when millions of interest points are to be considered. The 

descriptors in BRIEF (Section 4.4.3) are longer but in number but comprise only of bits and the 

length is a natural compromise between speed and storage [Calonder10]. The bits are derived by 

pairwise intensity comparisons between smoothed patches thus predicating a need for sampling 

strategy and for smoothing (to reduce response to noise) where the comparison between intensities 

is  
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This was demonstrated to have good performance, especially in speed. Clearly it is very simple, 

and some of the learning power must be implicit in the learning techniques used within the pipeline. 

The ORB detector [Rublee11] is a very fast binary descriptor since it is based on BRIEF, and is 

rotation invariant and insensitive to noise. In ORB the direction of a patch depends on the direction 

from its centre to a corner and the rotation invariance is achieved by the corner description (which 

uses centralised moments (Section 7.3.2). 

A major performance evaluation [Mikolajczyk05] compared the performance of descriptors 

computed for local interest regions and studied a number of operators, concerning in particular the 
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effects of geometric and affine transformations, for matching and recognition of the same object or 

scene.. The operators included a form of Gabor wavelets and SIFT and introduced the Gradient 

Location and Orientation Histogram (GLOH) which is an extension of the SIFT descriptor, and 

which appeared to offer better performance. The survey predated SURF and BRIEF and so they 

was not included. SIFT also performed well and there have been many applications of the SIFT 

approach for recognising objects in images, and the applications of SURF are burgeoning. One 

approach aimed to determine those key frames and shots of a video containing a particular object 

with ease and convenience of the Google search engine [Sivic03]. In this approach elliptical regions 

are represented by a 128-dimensional vector using the SIFT descriptor which was chosen by virtue 

of superior performance, especially when the object’s positions could vary by small amounts. From 

this, descriptions are constructed using machine learning techniques. A more recent comparison 

[Mukherjee15] highlights the all-round performance of ORB, SIFT and BRIEF, and is a good place 

to look. 

In common with other object recognition approaches, we have deployed SIFT for ear biometrics 

[Arbab-Zavar11, Bustard10] to capture the description of an individual’s ear by a constellation of 

ear parts, again confirming that people appear unique by their ear. Here, the points detected are 

those that are significant across scales, and thus provide an alternative characterisation (to the earlier 

Gabor wavelet analysis in Section 5.4.1.2) of the ear’s appearance. Figure 5.12(a) shows the SIFT 

points detected within a human ear and Figures 5.12(b) and (c) show the same point (the crus of 

helix, no less) being detected in two different ears, and Figure 5.12(d) shows the domains of the 

SIFT points dominant in the ear biometrics procedure. Note that these points do not include the 

outer perimeter of the ear, which was described by Gabor wavelets. Recognition by the SIFT 

features was complemented by the Gabor features, as we derive descriptions of different regions, 

leading to the successful identification of the subjects by their ears. An extended discussion of how 

ears can be used as a biometric and the range of techniques that can be used for recognition is 

available [Hurley08]. 

As such we have concerned a topical area which continues to be of major current interest: CBIR 

is a common application of computer vision techniques.  A recent study notes the prevalence now 

of deep learning “In recent years, the popularity of SIFT-based models seems to be overtaken by 

the convolutional neural network” citing performance issues [Zheng18]. However, there now many 

studies deploying interest point techniques for image matching, which show considerable 

performance capability. It is likely that the performance will be improved by technique refinement 

and analysis and therefore performance comparison and abilities will continue to develop 
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Figure 5.12  SIFT Keypoints in Ear Biometrics [Arbab-Zavar11] 
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5.4.2.2  Characterising Object Appearance and Shape 

 

There has long been an interest in detecting pedestrians within scenes, more for automated 

surveillance analysis than for biometric purposes. The techniques have included use of Haar 

features and SIFT description. An approach called the Histogram of Oriented Gradients (HoG) 

[Dalal05] has received much interest. This captures edge or gradient structure that is very 

characteristic of local shape in a way which is relatively unaffected by appearance changes. 

Essentially, it forms a template and deploys machine learning approaches to expedite recognition, 

in an effective way. In this way it is an extension to describing objects by a histogram of the edge 

gradients. 

First, edges are detected by the improved first order detector shown in Figure 4.4 and an edge 

image is created. Then, a vote is determined from a pixel’s edge magnitude and direction and stored 

in a histogram. The direction is ‘binned’ in that votes are cast into roughly quantised histogram 

ranges and these votes are derived from cells, which group neighbourhoods of pixels. One 

implementation is to use 8×8 image cells and to group these into 20° ranges (thus nine ranges within 

180° of unsigned edge direction). Local contrast normalisation is used to handle variation in 

gradient magnitude due to change in illumination and contrast with the background, and this was 

determined to be an important stage. This normalisation is applied in blocks, eventually leading to 

the person’s description which can then be learned by using machine learning approaches. Naturally 

there is a gamut of choices to be made, such as the choice of edge detection operator, inclusion of 

operator, cell size, the number of bins in the histogram and use of full 360° edge direction. 

Robustness is achieved in that noise or other effects should not change the histograms much: the 

filtering is done at the description stage rather than at the image stage (as with wavelet-based 

approaches).  

The process of building the HoG description is illustrated in Figure 5.13 where (a) is the original 

image; (b) is the gradient magnitude constructed from the absolute values of the improved first 

order difference operator; (c) is the grid of 8×8, superimposed on the edge direction image; and (d) 

illustrates the 3×3 (rectangular) grouping of the cells, superimposed on the histograms of gradient 

data. There is a rather natural balance between the grid size and the size of the grouping 

arrangements, though these can be investigated in application. Components of the walking person 

can be seen especially in the preponderance of vertical edge components in the legs and thorax. The 

grouping and normalisation of these data lead to the descriptor which can be deployed so as to 

detect humans/ pedestrians in static images. 

The approach is not restricted to detecting pedestrians since it can be trained to detect different 

shapes and it has been applied elsewhere. Given there is much interest in speed of computation, 

rather unexpectedly a Fast HoG was to appear soon after the original HoG [Zhu06] and which 

claims 30 fps capability. An alternative approach, and one which confers greater generality –

especially with humans - is to include the possibility of deformation, as will be covered in Section 

6.2. 
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(a) original image (b) gradient magnitude 

of (a) 

(c) grid of 8×8 cells (d) grouping histogram 

information into blocks 

Figure 5.13    Illustrating the HoG Description 

 

Essentially, these approaches can achieve fast extraction by decomposing a shape into its 

constituent parts. Clearly one detraction of the techniques is that if you are to change 

implementation - or to detect other objects - then this requires construction of the necessary models 

and parts, and that can be quite demanding. In fact, it can be less demanding to include shape, and 

as template matching can give a guaranteed result, another class of approaches is to reformulate 

template matching so as to improve speed. That is the Hough Transform, coming next. 

 

5.5  Hough Transform (HT) 

5.5.1  Overview 

 

The Hough Transform (HT) [Hough62] is a technique that locates shapes in images. In particular, 

it has been used to extract lines, circles and ellipses (or conic sections). In the case of lines, its 

mathematical definition is equivalent to the Radon transform [Deans81]. The HT was introduced 

by Hough [Hough62] and then used to find bubble tracks rather than shapes in images. However, 

Rosenfeld noted its potential advantages as an image processing algorithm [Rosenfeld69]. The HT 

was thus implemented to find lines in images [Duda72] and it has been extended greatly, since it 

has many advantages and many potential routes for improvement. Its prime advantage is that it can 

deliver the same result as that for template matching, but faster [Princen92] 

[Sklansky78][Stockman77]. This is achieved by a reformulation of the template matching process, 

based on an evidence gathering approach where the evidence is the votes cast in an accumulator 

array. The HT implementation defines a mapping from the image points into an accumulator space 

(Hough space). The mapping is achieved in a computationally efficient manner, based on the 

function that describes the target shape. This mapping requires much less computational resources 

than template matching. However, it still requires significant storage and high computational 

requirements. These problems are addressed later, since they give focus for the continuing 
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development of the HT. However, the fact that the HT is equivalent to template matching has given 

sufficient impetus for the technique to be amongst the most popular of all existing shape extraction 

techniques. 

5.5.2   Lines  

We will first consider finding lines in an image. In a Cartesian parameterisation, collinear points in 

an image with co-ordinates  yx,  are related by their slope m  and an intercept c  according to: 

 cmxy   (5.26) 

This equation can be written in homogeneous form as  

 01  BxAy  (5.27) 

where cA 1  and cmB  . Thus, a line is defined by giving a pair of values  BA, . However, 

we can observe a symmetry in the definition in Equation (5.27). This equation is symmetric since 

a pair of co-ordinates  yx,  also defines a line in the space with parameters  BA, . That is, 

Equation (5.27) can be seen as the equation of a line for fixed co-ordinates  yx,  or as the equation 

of a line for fixed parameters  BA, . Thus, pairs can be used to define points and lines 

simultaneously [Aguado00a]. The HT gathers evidence of the point  BA,  by considering that all 

the points  yx,  define the same line in the space  BA, . That is, if the set of collinear points 

  ii yx ,  defines the line  BA, , then  

 01 ii BxAy  (5.28) 

This equation can be seen as a system of equations and it can simply be rewritten in terms of the 

Cartesian parameterisation as 

 
ii ymxc   (5.29) 

Thus, to determine the line we must find the values of the parameters  cm,  (or  BA,  in 

homogeneous form) that satisfy Equation (5.29) (or 5.28, respectively). However, we must notice 

that the system is generally over-determined. That is, we have more equations than unknowns. 

Thus, we must find the solution that comes close to satisfying all the equations simultaneously. 

This kind of problem can be solved, for example, using linear least-squares techniques. The HT 

uses an evidence gathering approach to provide the solution. Notice that if 𝑥 is zero in Equation 

(5.29), then 𝑦𝑖 = 𝑐. That is, 𝑐 is the intersection of the line with the 𝑦 axis. 

The relationship between a point  ii yx ,  in an image and the line given in Equation (5.29) is 

illustrated in Figure 5.14. The points  ii yx ,  and  jj yx ,  in Figure 5.14(a) define the lines iU  and 

jU  in Figure 5.14(b), respectively. All the collinear elements in an image will define dual lines 

with the same concurrent point  BA, . This is independent of the line parameterisation used. The 

HT solves it in an efficient way by simply counting the potential solutions in an accumulator array 

that stores the evidence, or votes. The count is made by tracing all the dual lines for each point 

 ii yx , . Each point in the trace increments an element in the array, thus the problem of line 

extraction is transformed to the problem of locating a maximum in the accumulator space. This 

strategy is robust and has demonstrated to be able to handle noise and occlusion.  

The axes in the dual space represent the parameters of the line. In the case of the Cartesian 

parameterisation m  can actually take an infinite range of values, since lines can vary from 

horizontal to vertical. Since votes are gathered in a discrete array, then this will produce bias errors. 

It is possible to consider a range of votes in the accumulator space that cover all possible values. 
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This corresponds to techniques of antialiasing and can improve the gathering strategy 

[Brown83][Kiryati91].  

 

  

(a) image containing a line (b) lines in the dual space 

Figure 5.14  Illustrating the Hough Transform for Lines 

 

The implementation of the HT for lines is given in Code 5.4. The implementation gathers 

evidence for each point (𝑥, 𝑦) by drawing a line obtained by iterating over the parameter 𝑚. Thus, 

the iteration generates points (𝑚, 𝑐) in the accumulator. It is important to observe that Equation 

(5.29) is not suitable for implementation since the parameter c  can take an infinite range of values. 

In order to avoid this, the implementation uses two accumulator arrays. One accumulator is used to 

gather lines with slopes between -45º and 45º and another accumulator for lines with slopes between 

45º and 135º. The main loop in the implementation iterates over a range from 0º to 90º. Thus, each 

accumulator has 90º range and together both accumulators consider the full 180º. For the first 

accumulator lines are horizontal, so we can compute the intercept c according to Equation (5.29). 

In this case, the value c  is the intersection of the line with the 𝑦 axis. Notice that the size of the 

interceptor is defined as twice the image size since the intercept of lines in images is not limited by 

the height of the image. In the second case, the lines are vertical, so the code computes the 

intersection with they 𝑥 axis. As such, the line is then defined as 𝑥 = 𝑦 𝑚⁄ + 𝑐. Notice that when 

the tangent of 𝑚 is computed in the code, 𝑚 is limited to values between -45º and 45º.  

The implementation in Code 5.4 introduces weighting in the accumulator process. This weight 

is computed as the difference between the position of the accumulator and the position of the point 

in the voting line. This is introduced to reduce discretization errors caused by the fact that we are 

drawing a continuous curve into a discrete array. Instead of increasing a single entry for each point 

in the line, the code increments two positions by an amount proportional to the distance to the 

continuous line. The use of weights produces accumulators with less noise. 
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# Gather evidence  

for x,y in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y,x] != 0: 

        for m in range(0,90): 

             

            # Lines between -45 and 45 degrees 

            angle = ((-45 + m) * math.pi) / 180.0 

            c = y - math.tan(angle) * x 

            bucket = int(c) 

            if bucket> 0 and bucket < 2*height - 1: 

                weight = c - int(c) 

                accHorizontal[m, bucket] += (1.0 - weight) 

                accHorizontal[m, bucket+1] += weight 

             

            # Lines between 45 and 135 degrees 

            angle = ((45.0 + m) * math.pi) / 180.0 

            c = x - y / math.tan(angle) 

            bucket = int(c) 

            if bucket> 0 and bucket < 2*width - 1: 

                weight = c - int(c) 

                accVertical[m, bucket] += (1.0 - weight) 

                accVertical[m, bucket+1] += weight 

Code 5.4  Implementing the Hough transform for lines 

 

Figure 5.15 shows an example of the location results obtained by using the HT implemented in 

Code 5.4. Figure 5.15(a) shows the edges used in the accumulator process. Figures 5.15(c) and (d) 

show the vertical and horizontal accumulators. The position of each peak defines the parameters 
(𝑚, 𝑐) of a line. The magnitude of the peaks is proportional to the number of pixels in the line from 

which it was generated. So small peaks represent small lines in the image. Figure 5.15(b) shows the 

lines represented by the maxima in the accumulators. These lines were drawn by iterating the values 
(𝑥, 𝑦)  for a peak (𝑚, 𝑐) in the accumulator. Here, we can see that the parameters describing the 

lines have been extracted well. Note that the end points of the lines are not delivered by the HT, 

only the parameters that describe them. You have to go back to the image to obtain line length. 
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(a) edges (b) localized lines 

  

(c) accumulator for horizontal lines (d) accumulator for vertical lines 

Figure 5.15  Applying the Hough Transform for Lines 

 

We can see that the HT delivers a correct response, correct estimates of the parameters used to 

specify the line, so long as the number of collinear points along that line exceeds the number of 

collinear points on any other line in the image. As such, the Hough transform has the same 

properties in respect of noise and occlusion, as with template matching. However, the non-linearity 

of the parameters and the discretisation produce noisy accumulators. A major problem in 

implementing the basic HT for lines is the definition of an appropriate accumulator space. In 

application, Bresenham’s line drawing algorithm [Bresenham65] can be used to draw the lines of 

votes in the accumulator space. This ensures that lines of connected votes are drawn as opposed to 

use of Equation (5.29) that can lead to gaps in the drawn line. Also, backmapping [Gerig86] can be 

used to determine exactly which edge points contributed to a particular peak. Backmapping is an 

inverse mapping from the accumulator space to the edge data and can allow for shape analysis of 

the image by removal of the edge points which contributed to particular peaks, and then by re-

accumulation using the HT. Note that the computational cost of the HT depends on the number of 

edge points (
en ) and the length of the lines formed in the parameter space ( l ), giving a 

computational cost of  lnO e
. This is considerably less than that for template matching, given 

earlier as  22mNO . 

One way to avoid the problems of the Cartesian parameterisation in the HT is to base the 

mapping function on an alternative parameterisation. One of the most proven techniques is called 

the foot-of-normal parameterisation. This parameterises a line by considering a point  yx,  as a 

function of an angle normal to the line, passing through the origin of the image. This gives a form 
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of the HT for lines known as  the polar HT for lines [Duda72]. The point where this line intersects 

the line in the image is given by 

     sincos yx   (5.30) 

where   is the angle of the line normal to the line in an image and   is the length between the 

origin and the point where the lines intersect, as illustrated in Figure 5.16.  

 

 

Figure 5.16 Polar Consideration of a Line 

 

By recalling that two lines are perpendicular if the product of their slopes is -1, and by considering 

the geometry of the arrangement in Figure 5.16, we obtain 

 
   



tan

1

sin
 mc  (5.31) 

By substitution in Equation (5.26) we obtain the polar form, Equation (5.30). This provides a 

different mapping function: votes are now cast in a sinusoidal manner, in a 2D accumulator array 

in terms of   and  , the parameters of interest. The advantage of this alternative mapping is that 

the values of the parameters   and   are now bounded to lie within a specific range. The range for 

  is within 180o; the possible values of   are given by the image size, since the maximum length 

of the line is N2 , where N  is the (square) image size. The range of possible values is now 

fixed, so the technique is practicable. 
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(a) for one point (b) for two points (c) for three points 

Figure 5.17 Images and the Accumulator Space of the Polar Hough Transform 

 

As the voting function has now changed, we shall draw different loci in the accumulator space. In 

the conventional HT for lines, a straight line mapped to a straight line as in Figure 5.17. In the polar 

HT for lines, points map to curves in the accumulator space. This is illustrated in Figure 5.17 which 

shows the polar HT accumulator spaces for (a) one, (b) two and (c) three points, respectively. For 

a single point in the upper row of Figure 5.17(a) we obtain a single curve shown in the lower row 

of Figure 5.17(a). For two points we obtain two curves, which intersect at a position which describes 

the parameters of the line joining them, Figure 5.17(b). An additional curve obtains for the third 

point and there is now a peak in the accumulator array containing three votes, Figure 5.17(c).  
 

# Gather evidence  

for x,y in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y,x] != 0: 

        for m in range(0,360): 

            angle = (m * math.pi) / 180.0 

            r = (x-cx) * math.cos(angle) + (y-cy) * math.sin(angle) 

            bucket = int(r) 

            if bucket> 0 and bucket < maxLenght - 1: 

                weight = r - int(r) 

                accumulator[m, bucket] += (1.0 - weight) 

                accumulator[m, bucket+1] += weight 

Code 5.5  Implementation of the Polar Hough Transform for Lines 

 

The implementation of the polar HT for lines is presented in Code 5.5. The accumulator array is 

a set of 360 bins for value of   in the range 0 to 180, and for values of   in the range 0 to 

22 MN  , where MN   is the picture size. Then, for image (edge) points greater than a chosen 

threshold, the angle relating to the bin size is evaluated (as radians in the range 0 to  ) and then the 

value of   is evaluated using Equation (5.30) and the appropriate accumulator cell is incremented 

so long as the parameters are within the range. Similar to the HT for lines, a weight is used to 

decrease the noise caused by the discretization of the accumulator. The accumulator array obtained 

by applying this implementation to the image in Figure 5.4 is shown in Figure 5.18  and shows a 

single accumulator that is used to gather data about the lines in the image. Figure 5.18(b) shows 

peaks that define the lines in Figure 5.18(a). Using a single accumulator makes the polar 

implementation far more practicable than the earlier Cartesian version. 
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(a) localized lines (b) accumulator 

Figure 5.18 Applying the Polar Hough Transform for Lines 

 

5.5.3   HT for Circles  

The HT can be extended by replacing the equation of the curve in the detection process. The 

equation of the curve can be given in explicit or parametric form. In explicit form, the HT can be 

defined by considering the equation for a circle given by  

     22

0

2

0 ryyxx   (5.32) 

This equation defines a locus of points  yx,  centred on an origin  00 , yx  and with radius r . This 

equation can again be visualised in two dual ways: as a locus of points  yx,  in an image, or as a 

locus of points  00 , yx  centred on  yx,  with radius r .  

 

  

(a) image containing a circle (b) accumulator space 
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(c) 3D accumulator space 

Figure 5.19 Illustrating the Hough Transform for Circles 

 

Figure 5.19 illustrates this dual definition. Each edge point in Figure 5.19(a) defines a set of 

circles in the accumulator space. These circles are defined by all possible values of the radius and 

they are centred on the co-ordinates of the edge point. Figure 5.19(b) shows three circles defined 

by three edge points. These circles are defined for a given radius value.  Actually, each edge point 

defines circles for the other values of the radius. This implies that the accumulator space is three 

dimensional (for the three parameters of interest) and that edge points map to a cone of votes in the 

accumulator space. Figure 5.19(c) illustrates this accumulator. After gathering evidence of all the 

edge points, the maximum in the accumulator space again corresponds to the parameters of the 

circle in the original image. The procedure of evidence gathering is the same as that for the HT for 

lines, but votes are generated in cones, according to Equation (5.32). 

Equation (5.32) can be defined in parametric form as  

     sincos 00 ryyrxx  (5.33) 

The advantage of this representation is that it allows us to solve for the parameters. Thus, the HT 

mapping is defined by 

     sincos 00 ryyrxx  (5.34) 

These equations define the points in the accumulator space (Figure 5.19(b)) dependent on the radius 

r . Note that   is not a free parameter, but defines the trace of the curve. The trace of the curve (or 

surface) is commonly referred to as the point spread function. 

The implementation of the HT for circles is shown in Code 5.6. This is similar to the HT for 

lines, except that the voting function corresponds to that in Equation (5.34) and the accumulator 

space is actually 3D, in terms of the centre parameters and the radius. In the implementation the 

parameter maxr defines the maximum radius size. A circle of votes is generated by varying theta 

(Python and Matlab do not allow Greek symbols!) from 0o to 360o. The discretisation of theta 

controls the granularity of voting, too small increments give very fine coverage of the parameter 
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space, if it is too large then it produces a sparse coverage. The accumulator space, accumulator 

(initially zero), is incremented only for points whose co-ordinates lie within the specified range (in 

this case the centre cannot lie outside the original image).  

 

function accum = circle_hough(image, maxr) 

 

%get dimensions 

[rows,cols]=size(image); 

  

%set a start radius 

startr=10; 

  

%set the output image to black (0) 

accum(1:rows,1:cols,1:(maxr-startr+1))=0; 

  

%and an output image 

accum(1:rows,1:cols)=0; 

  

for x = 1:cols %address all columns  

  for y = 1:rows %address all rows 

      for rad = startr:maxr 

          if image(y,x)>80 

              for theta=1:360 

                  xdash=round(rad*cos(theta*pi/180)); 

                  ydash=round(rad*sin(theta*pi/180)); 

                  if (((x+xdash)<cols)&&((x+xdash)>0)&&... 

                      ((y+ydash)<rows)&&((y+ydash)>0)) 

                      accum(y+ydash,x+xdash,rad-startr+1)=... 

                          accum(y+ydash,x+xdash,rad-startr+1)+1; 

                  end 

              end 

          end 

      end 

  end 

end 

 

parameters=get_max(accum); 

Code 5.6  Implementating the Hough Transform for Circles 

 

The application of the HT for circles is illustrated in Figure 5.20. Figure 5.20(a) shows an image 

of an eye. Figure 5.20(b) shows the edges computed from the image.  The edges are well defined 

and there are many edges produced by noise (as ever). The result of the HT process is shown in 

Figure 5.20(c) aimed to, and succeeding to, detect the border of the pupil. The peak of the 

accumulator space represents the centre of the circle, though it only just exists as a peak in this 

noisy image. Many votes exist away from the circle’s centre, though these background votes are 

less than the actual peak. Figure 5.20(d) shows the detected circle defined by the parameters with 

the maximum in the accumulator. The HT will detect the circle (provide the right result) as long as 

more points are in a circular locus described by the parameters of the target circle than there are on 

any other circle. This is exactly the same performance as for the HT for lines, as expected, and is 

consistent with the result of template matching. Note that the HT merely finds the circle with the 

maximum number of points (in Figure 5.20(d) a small range of radii was given to detect the 

perimeter of the pupil) ; it is possible to include other constraints to control the circle selection 

process, such as gradient direction for objects with known illumination profile. In the case of the 

human eye, the (circular) iris is usually darker than its white surroundings. 
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(a) image (b) edges 

 

  

(c) accumulator (d) detected circle 

Figure 5.20  Applying the Hough Transform for Circles 

 

In application code, Bresenham’s algorithm for discrete circles [Bresenham77] can be used to 

draw the circle of votes, rather than use the polar implementation of Equation (5.34). This ensures 

that the complete locus of points is drawn and avoids the need to choose a value for increase in the 

angle used to trace the circle. Bresenham’s algorithm can be used to generate the points in one 

octant, since the remaining points can be obtained by reflection. Again, backmapping can be used 

to determine which points contributed to the extracted circle. 

Figure 5.20 also shows some of the difficulties with the HT, namely that it is essentially an 

implementation of template matching, and does not use some of the richer stock of information 

available in an image. For example, we might know constraints on size: the largest size an iris or 

pupil would be in the image. Also, we know some of the topology: the eye region contains two 

ellipsoidal structures with a circle in the middle. We might also know brightness information: the 

pupil is darker than the surrounding iris. These factors can be formulated as constraints on whether 

edge points can vote within the accumulator array. A simple modification is to make the votes 

proportional to edge magnitude, in this manner, points with high contrast will generate more votes 

and hence have more significance in the voting process. In this way, the feature extracted by the 

HT can be arranged to suit a particular application. 

5.5.4   HT for Ellipses 

Circles are very important in shape detection since many objects have a circular shape. However, 

because of the camera’s viewpoint, circles do not always look like circles in images. Images are 

formed by mapping a shape in 3D space into a plane (the image plane). This mapping performs a 



Computer Vision and Image Processing: Feature Extraction 

 234 

perspective transformation. In this process, a circle is deformed to look like an ellipse. We can 

define the mapping between the circle and an ellipse by a similarity transformation. That is, 
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where  yx ,  define the co-ordinates of the circle in Equation (5.33),   represents the orientation, 

 yx SS ,  a scale factor and  yx tt ,  a translation.  If we define  
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then the circle is deformed into 
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This equation corresponds to the polar representation of an ellipse. This polar form contains six 

parameters  yyxx bababa ,,,,, 00  that characterise the shape of the ellipse.   is not a free parameter 

and it only addresses a particular point in the locus of the ellipse (just as it was used to trace the 

circle in Equation 5.34). However, one parameter is redundant since it can be computed by 

considering the orthogonality (independence) of the axes of the ellipse (the product 0 yyxx baba  

which is one of the known properties of an ellipse). Thus, an ellipse is defined by its centre  00 ,ba  

and three of the axis parameters  yyxx baba ,,, . This gives five parameters which is intuitively 

correct since an ellipse is defined by its centre (2 parameters), it size along both axes (2 more 

parameters) and its rotation (1 parameter). In total this states that 5 parameters describe an ellipse, 

so our three axis parameters must jointly describe size and rotation. In fact, the axis parameters can 

be related to the orientation and the length along the axes by  

   2222tan yxyx

x

y
bbbaaa

a

a
  (5.38) 

where  ba,  are the axes of the ellipse, as illustrated in Figure 5.21. 

 

Figure 5.21 Definition of Ellipse Axes 
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In a similar way to Equation (5.33), Equation (5.36) can be used to generate the mapping 

function in the HT. In this case, the location of the centre of the ellipse is given by 
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 (5.39) 

The location is dependent on three parameters, thus the mapping defines the trace of a hypersurface 

in a 5D space. This space can be very large. For example, if there are 100 possible values for each 

of the five parameters, the 5D accumulator space contains 1010 values. This is 10 GB of storage, 

which is of course tiny nowadays (at least, when someone else pays!). Accordingly there has been 

much interest in ellipse detection techniques which use much less space and operate much faster 

than direct implementation of Equation (5.38). 

Code 5.7 shows the implementation of the HT mapping for ellipses. A 5D accumulator imposes 

significant computational cost, thus the technique is only useful if it considers a small range for the 

parameters. In the code the parameters majorAxisRange, minorAxisRange and 

angleRange determine the possible values for the axis and rotation angles. The main loop in the 

function computes the centre parameters defined in Equation (5.39) for an ellipse according to 

rotation and axis lengths.  

# Gather evidence  

for x,y in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y,x] != 0: 

        for majAxis, minAxis in itertools.product(range(0, majorAxisSize),         \ 

                                                  range(0, minorAxisSize)): 

            a = majAxis + majorAxisRange[0] 

            b = minAxis + minorAxisRange[0] 

            for rot in range(0,angleSize): 

                rotAngle = ((rot + angleRange[0]) * pi) / 180.0   

                for m in range(0,360): 

                    angle = (m * pi) / 180.0 

                     

                    x0 = x+ a*cos(angle)*cos(rotAngle) - b*sin(angle)*sin(rotAngle) 

                    y0 = y+ a*cos(angle)*sin(rotAngle) + b*sin(angle)*cos(rotAngle) 

                    bX0 = int(x0) 

                    bY0 = int(y0) 

                     

                    if bX0>0 and bX0<width-1 and bY0>0 and bY0<height-1: 

                        wX = x0 - bX0 

                        wY = y0 - bY0 

                        accumulator[bY0,bX0,majAxis,minAxis,rot] += (1.0-wX)+(1.0-wY)          

                        accumulator[bY0+1,bX0,majAxis,minAxis,rot] += wX + (1.0-wY) 

                        accumulator[bY0,bX0+1,majAxis,minAxis,rot] += (1.0-wX) + wY          

                        accumulator[bY0+1,bX0+1,majAxis,minAxis,rot] +=  wX + wY   

Code 5.7  Implementating the Hough Transform for Ellipses 

Figure 5.22 shows an example of the application of the ellipse extraction process described in 

the Code 5.7. Figure 5.22(a) shows an image with an evident ellipse created from an oblique view 

of a circle. Figure 5.22(b) shows edges obtained with the Canny edge detector. A 2D slice of the 

5D accumulator is shown in Figure 5.22(c). The array shows a peak whose position corresponds to 

the centre of the ellipse. We can observe that the accumulator shows close peaks near the ellipse 

location, so there is more than one ellipse to be located in the figure. The peaks are produced by the 

double edge of the ellipse so different possible ellipses can match parts of the internal or external 

edges. Figure 5.22(d) shows the ellipses that are obtained by considering the parameters defined by 

the maxima peaks. The rotation of all ellipses appears close to zero. However, the positions of 

different ellipses shift by a few pixels and the axis values vary slightly. This matches different 

segments of the interior and exterior ellipse’s edges. Thus, as with the earlier examples for line and 

circle extraction, it is necessary to interpret the accumulator space in order to discover which 

structures produce particular parameter combinations. 
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(a) input image (b) edges 

 

 

(c) accumulator  (d) detected ellipses 

Figure 5.22  Applying the Hough Transform for Ellipses 

5.5.5  Parameter Space Decomposition 

The HT gives the same (optimal) result as template matching and even though it is faster, it still 

requires significant computational resources. In the previous sections, we saw that as we increase 

the complexity of the curve under detection, the computational requirements increase in exponential 

way. Thus, the HT becomes less practical. For this reason, most of the research in the HT has 

focused on the development of techniques aimed to reduce its computational complexity 

[Illingworth88] [Leavers93]. One important way to reduce the computation has been the use of 

geometric properties of shapes to decompose the parameter space. Several techniques have used 

different geometric properties. These geometric properties are generally defined by the relationship 

between points and derivatives. 

5.5.5.1  Parameter space reduction for lines 

For a line, the accumulator space can be reduced from 2D to 1D by considering that we can compute 

the slope from the information of the image. The slope can be computed either by using the gradient 

direction at a point or by considering a pair of points. That is 
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


  (5.40) 

were   is the gradient direction at the point. In the case of take two points, by considering Equation 

(5.26) we have that, 
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Thus, according to Equation (5.30) we have that one of the parameters of the polar representation 

for lines,  , is now given by 

 






















 

12

2111 tanor
1

tan
yy

xx
 (5.42) 

These equations do not depend on the other parameter   and they provide alternative mappings to 

gather evidence. That is, they decompose the parametric space, such that the two parameters   and 

  are now independent. The use of edge direction information constitutes the base of the line 

extraction method presented by O'Gorman and Clowes [O'Gorman76]. The use of pairs of points 

can be related to the definition of the Randomised Hough Transform [Xu90]. Obviously, the 

number of feature points considered corresponds to all the combinations of points that form pairs. 

By using statistical techniques, it is possible to reduce the space of points in order to consider a 

representative sample of the elements. That is, a subset which provides enough information to 

obtain the parameters with predefined and small estimation errors. 

Code 5.8 shows the implementation of the parameter space decomposition for the HT for lines. 

In this implementation, the slope of the lines is computed by considering a pair of points. Pairs of 

points are restricted to a neighbourhood given by the parameter deltaPointRange. This defines 

the minimum and maximum distance between points in a pair. In general, we do not want to have 

points that are close to each other since the gradient will not be accurate due to the image 

discretization. However, we do not want points too far apart since they may not belong to the same 

object in the image and they will only generate noise. As such, the range should be chosen by 

considering the noise, the image resolution and the size of the lines.  

In Code 5.8 the implementation of Equation (5.42) is performed by using the function atan2 

that returns an angle between −180 to 180. Since our accumulators only can store positive values, 

then we add 180 to all values. The angle defined by two points is stored in the variable 

pointAngle.  Notice that the centre point of the line (intersection of    with the line) can be out 

of the image, so in order to consider all possible lines we have to consider that   has a 360 range. 

The angle computed from the points is used, according to Equation (5.42), to compute  . Notice 

that to gather evidence we need to consider that the distance between points defines a discrete set 

of possible angles. For example, for points that are a single pixel apart there are only nine possible 

angles. Accordingly, the gathering process in the code increments the accumulator by a delta 

interval that is obtained according to the distance between the points.  
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# Gather evidence for a point x,y 

for x,y in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y,x] != 0: 

        # Look for points at this distance 

        for dx,dy in itertools.product(range(-deltaPtRange[1],deltaPtRange[1]+1),   \ 

                                       range(-deltaPtRange[1],deltaPtRange[1]+1)): 

         

            if abs(dx) > deltaPtRange[0] or abs(dy) > deltaPtRange[0]: 

                wx,wy = x+dx, y+dy 

                if wx > 0 and wy > 0 and wx < width and wy < height                 \ 

                          and magnitude[wy, wx] !=0: 

                    pointAngle = math.atan2(-float(wx-x), float(wy-y)) + math.pi 

       

                    # If r is negative, the line is in the other side of the centre 

                    r = (x-cx) * math.cos(pointAngle) + (y-cy) * math.sin(pointAnge) 

                    if r < 0: 

                        if pointAngle > math.pi: pointAngle -= math.pi 

                        else:                    pointAngle += math.pi 

                     

                    # Accumulator entries depend on the distance to the second point 

                    deltaDistance = math.sqrt(dx*dx + dy*dy) 

                    incAngle = int(math.atan(1.0/deltaDistance) * 180.0 /  math.pi) 

                  

                    buketAngleBase = int((pointAngle * 180.0) / math.pi)    

                  

                    # More buckets if the points are close 

                    for deltaBucket in range(-incAngle, +incAngle+1): 

                        bucket = buketAngleBase + deltaBucket  

                        if bucket < 0: 

                            bucket = 360 + bucket 

                        if bucket >= 360: 

                            bucket = bucket-360 

                             

                        w = (incAngle - math.fabs(deltaBucket)) / float(incAngle) 

                        accM[bucket] += w 

Code 5.8  Implementation of the Parameter Space Reduction for the Hough Transform 

for Lines. Angle accumulator 

 

Figure 5.23 shows the accumulators for the two parameters   and   as obtained by the 

implementation of Code 5.8. The accumulators are now one dimensional as in Figure 5.23(c) and 

(d) and show clear peaks. The peaks in the first accumulator represent the value of  , whilst the 

peaks in the second accumulator represent the value of  . Notice that when implementing the 

parameter space decomposition, it is necessary to follow a two-step process. First, it is necessary to 

gather data in one accumulator and search for the maximum. Secondly, the location of the maximum 

value is used as parameter value to gather data of the remaining accumulator. Thus, we first 

compute the accumulator     and then for each peak (line), we generate an accumulator for  . That 

is, we have a single accumulator for the angle and as many accumulators for   as lines detected in 

the image. We can see that most of the peaks in the first accumulator are close to 60, so with 

similar slopes. The peaks define the lines in Figure 5.23(b). It is important to mention that in general 

parameter space decomposition produces accumulators with more noise than when gathering 

evidence in the full dimensional accumulator. So it is important to include strategies to select good 

candidate points. In this implementation we considered pairs of points within a selected distance, 

but other selection criteria like points with similar gradient direction or similar colours can help to 

reduce the noise in the accumulators.  
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(a) edges (b) located lines 

  

(c) angle accumulator (d) distance accumulator 

Figure 5.23  Parameter Space Reduction for the Hough Transform for Lines 

5.5.5.2  Parameter space reduction for circles 

In the case of lines the relationship between local information computed from an image and the 

inclusion of a group of points (pairs) is in an alternative analytical description that can readily be 

established. For more complex primitives, it is possible to include several geometric relationships. 

These relationships are not defined for an arbitrary set of points but include angular constraints that 

define relative positions between them. In general, we can consider different geometric properties 

of the circle to decompose the parameter space. This has motivated the development of many 

methods of parameter space decomposition [Aguado96b]. An important geometric relationship is 

given by the geometry of the second directional derivatives. This relationship can be obtained by 

considering that Equation (5.33) defines a position vector function. That is,  

      
1 0

0 1
x y   

   
    

   
 (5.43) 

where          sincos 00 ryyrxx  (5.44) 

In this definition, we have included the parameter of the curve as an argument in order to highlight 

the fact that the function defines a vector for each value of  . The end-points of all the vectors trace 

a circle. The derivatives of Equation (5.43) with respect to   define the first and second directional 

derivatives. That is,  
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where  
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Figure 5.24 illustrates the definition of the first and second directional derivatives. The first 

derivative defines a tangential vector while the second one is similar to the vector function, but it 

has reverse direction. In fact, that the edge direction measured for circles can be arranged so as to 

point towards the centre was actually the basis of one of the early approaches to reducing the 

computational load of the HT for circles [Kimme75]. 

 

 

Figure 5.24 Definition of the First and Second Directional Derivatives for a Circle 

 

According to Equation (5.44) and Equation (5.46), we observe that the tangent of the angle of the 

first directional derivative denoted as    is given by  
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Angles will be denoted by using the symbol ^. That is, 

      1tanˆ  (5.48) 

Similarly, for the tangent of the second directional derivative we have that, 
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By observing the definition of    , we have  
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This equation defines a straight line passing through the points      yx ,  and  00 , yx  and it is 

perhaps the most important relation in parameter space decomposition. The definition of the line is 

more evident by rearranging terms. That is, 

        00 yxxy    (5.51) 

This equation is independent of the radius parameter. Thus, it can be used to gather evidence of the 

location of the shape in a 2D accumulator. The HT mapping is defined by the dual form given by 

         yxxy 00
 (5.52) 

That is, given an image point      yx ,  and the value of     we can generate a line of votes in 

the 2D accumulator  00 , yx . Once the centre of the circle is known, then a 1D accumulator can be 

used to locate the radius. The key aspect of the parameter space decomposition is the method used 

to obtain the value of     from image data. We will consider two alternative ways. First, we will 

show that     can be obtained by edge direction information. Secondly, how it can be obtained 

from the information of a pair of points. 

In order to obtain    , we can use the definition in Equation (5.47) and Equation (5.49). 

According to these equations, the tangents     and    are perpendicular. Thus,  
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 (5.53) 

Thus, the HT mapping in Equation (5.52) can be written in terms of gradient direction    as 
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This equation has a simple geometric interpretation illustrated in Figure 5.25(a). We can see that 

the line of votes passes through the points      yx ,  and  00 , yx . The slope of the line is 

perpendicular to the direction of gradient direction. 

 

  

(a) relationship between angles (b) two point angle definition 

Figure 5.25 Geometry of the Angle of the First and Second Directional Derivatives 

 

An alternative decomposition can be obtained by considering the geometry shown in Figure 

5.25(b). In the figure we can see that if we take a pair of points  11, yx  and  22 , yx , where 
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 ii xx  , then the line that passes through the points has the same slope as the line at a point 

     yx , . Accordingly,  
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where  212
1   (5.56) 

Based on Equation (5.55) we have that 
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The problem with using a pair of points is that by Equation (5.56) we cannot know the location of 

the point      yx , . Fortunately, the voting line also passes through the midpoint of the line 

between the two selected points. Let us define this point as 
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Thus, by substitution of Equation (5.55) in (5.54) and by replacing the point      yx ,  by  mm yx ,

, we have that the HT mapping can be expressed as 
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This equation does not use gradient direction information, but it is based on pairs of points. This is 

analogous to the parameter space decomposition of the line presented in Equation (5.42). In that 

case, the slope can be computed by using gradient direction or, alternatively, by taking a pair of 

points. In the case of the circle, the tangent (and therefore the angle of the second directional 

derivative) can be computed by the gradient direction (i.e., Equation 5.53) or by a pair of points 

(i.e., Equation 5.57). However, it is important to notice that there are some other combinations of 

parameter space decomposition [Aguado96a].  

 

# Gather evidence for the circle location by using two points 

accumulator = createImageF(width, height) 

for x1,y1 in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y1,x1] != 0: 

        # Look for points at this distance 

        for dx,dy in itertools.product(range(0,deltaPointRange[1]+1),          \ 

                                       range(0,deltaPointRange[1]+1)): 

         

            if (dx!=0 or dy!=0) and (abs(dx) > deltaPointRange[0] or           \ 

                                     abs(dy) > deltaPointRange[0]): 

                x2, y2 = x1+dx, y1+dy 

                if x2 > 0 and y2 > 0 and x2 < width and y2 < height and        \ 

                                                  magnitude[y2, x2] !=0: 

                    xm, ym = (x1 + x2) / 2.0, (y1 + y2) / 2.0                     

                    if abs(dx) < abs(dy): 

                        m = float(dx) / float(-dy) 

                        for x in range(0, width): 

                            y = m *(x - xm) + ym 

                            intY = int(y) 

                            if intY > 0 and intY < height -1: 

                                weight = y - intY 

                                accumulator[ intY,   x] += (1.0 - weight) 

                                accumulator[ intY+1, x] += weight 

                    else: 

                        m = float(-dy) / float(dx) 

                        for y in range(0, height): 

                            x = m *(y - ym) + xm 
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                            intX = int(x) 

                            if intX > 0 and intX < width -1: 

                                weight = x - intX 

                                accumulator[ y, intX] += (1.0 - weight) 

                                accumulator[ y, intX+1] += weight 

Code 5.9  Parameter Space Reduction for the Hough Transform for Circles 

 

Code 5.9 shows the implementation of the parameter space decomposition for the HT for circles. 

The implementation only detects the position of the circle and it gathers evidence by using the 

mapping in Equation (5.59). Similar to the implementation of lines, in this case points are selected 

from a neighbourhood defined by the parameter deltaPointRange. As such, we avoid using 

pixels that are close to each other since they do not produce accurate votes and we also avoid using 

pixels that are far away from each other. In order to trace the line in Equation (5.59), we use two 

equations: one for horizontal and one for vertical lines. As in previous implementations, it is 

important to include weighting to reduce discretization errors.  

Figure 5.26 shows an example of the results obtained by the implementation in Code 5.9. The 

example shows the input edges obtained by the Canny edge detector for the eye image in Figure 

5.20. We can see that both accumulators show a clear peak that represents the location of the circle. 

Small peaks in the background of the accumulator in Figure 5.26(b) correspond to circles with only 

a few points. In general, there is a compromise between the width of the peak and the noise in the 

accumulator. The peak can be made narrower by considering pairs of points that are more widely 

spaced. However, this can also increase the level of background noise. Background noise can be 

reduced by taking points that are closer together, but this makes the peak wider. The accumulator 

in Figure 5.26(d) shows the evidence gathered for the circle radius. This accumulator is obtained 

by selecting the location parameters as the maximum in the accumulator in Figure 5.26(c) and then 

computing the gather evidence for the radius for each image point according to Equation 5.32.  

 

  

(a) input edges (b) located circle  
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(c) centre accumulator (d) radius accumulator 

Figure 5.26 Parameter Space Reduction for the Hough Transform for Circles 

5.5.5.3  Parameter space reduction for ellipses 

Part of the simplicity in the parameter decomposition for circles comes from the fact that circles are 

(naturally) isotropic. Ellipses have more free parameters and are geometrically more complex. 

Thus, geometrical properties involve more complex relationships between points, tangents and 

angles. However, they maintain the geometric relationship defined by the angle of the second 

derivative. According to Equation (5.43) and Equation (5.45), the vector position and directional 

derivatives of an ellipse in Equation (5.37) have the components 
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The tangent of angle of the first and second directional derivatives are given by 
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By considering Equation (5.59) we have that Equation (5.49) is also valid for an ellipse. That is, 
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xx

yy
 (5.62) 

The geometry of the definition in this equation is illustrated in Figure 5.27 (a). As in the case of 

circles, this equation defines a line that passes through the points      yx ,  and  00 , yx . 

However, in the case of the ellipse the angles  ˆ  and   ˆ  are not orthogonal. This makes the 

computation of     more complex. In order to obtain     we can extend the geometry presented 

in Figure 5.25(b). That is, we take a pair of points to define a line whose slope defines the value of 

   at another point. This is illustrated in Figure 5.27(b). The line in Equation (5.62) passes 

through the middle point  mm yx , . However, it is not orthogonal to the tangent line. In order to 

obtain an expression of the HT mapping, we will first show that the relationship in Equation (5.56) 

is also valid for ellipses. Then we will use this equation to obtain    . 
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(a) relationship between angles (b) two point angle definition 

Figure 5.27 Geometry of the Angle of the First and Second Directional Derivatives 

 

The relationships in Figure 5.27(b) do not depend on the orientation or position of the ellipse. Thus, 

we have that three points can be defined by 
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 (5.63) 

The point      yx ,  is given by the intersection of the line in Equation (5.62) with the ellipse. 

That is,  
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By substitution of the values of  mm yx ,  defined as the average of the co-ordinates of the points 

 11, yx  and  22 , yx  in Equation (5.58), we have that  
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 (5.65) 

Thus,     212
1tantan   (5.66) 

From this equation is evident that the relationship in Equation (5.56) is also valid for ellipses. Based 

on this result, the tangent angle of the second directional derivative can be defined as 

      tan
x

y

a

b
 (5.67) 

By substitution in Equation (5.64) we have that 

  
m
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y
   (5.68) 

This equation is valid when the ellipse is not translated. If the ellipse is translated then the tangent 

of the angle can be written in terms of the points  mm yx ,  and  TT yx ,  as 
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By considering that the point  TT yx ,  is the intersection point of the tangent lines at  11, yx  and 

 22 , yx  we obtain 

  
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
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2
 (5.70) 

where 
2121
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and 1 , 2  are the slope of the tangent line to the points. Finally, by considering Equation (5.62), 

the HT mapping for the centre parameter is defined as 
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 00

2

2
 (5.72) 

This equation can be used to gather evidence that is independent of rotation or scale. Once the 

location is known, it is necessary a 3D parameter space to obtain the remaining parameters. 

However, these parameters can also be computed independently using two 2D parameter spaces 

[Aguado96b]. Of course that you can avoid using the gradient direction in Equation (5.70) by 

including more points. In fact, the tangent     can be computed by taking four points 

[Aguado96a]. However, the inclusion of more points generally leads to more background noise in 

the accumulator.  

Code 5.10 shows the implementation of the ellipse location by the mapping in Equation (5.59). 

As in the case of the circle, pairs of points need to be restricted. However, in this implementation 

we show a different approach to select pair of points. Instead of simply consider a distance range, 

we create curve segments by considering the neighbour pixels. In general, we expect that pixels in 

segments to belong to the same primitive, so pair of pixels should provide better evidence than only 

selecting pixels in an image region. The segments are stored in the segments array. Pairs of points 

are formed by selecting random points in the segments. The implementation rejects pairs of points 

that have similar gradients since they produce a polar point that tends to infinity. Consequently, 

points with similar slope do not provide accurate evidence. We should notice that as the eccentricity 

of the ellipse increases, close points tend to have similar gradients making the detection process 

more difficult. Also notice that the gradient is noisy and not very accurate, so the resulting peak is 

generally quite wide. Again, the selection of the distance between points is a compromise between 

the level of background noise and the width of the peak. A relevant aspect of the implementation is 

that it is necessary to consider that evidence is actually gathered by tracing a line in the accumulator. 

Thus, as in the previous implementation, it is important to consider the slope of the line during the 

accumulation process. For horizontal lines 𝑥 is the independent variable whilst for vertical lines we 

use 𝑦. 

Figure 5.28 shows an example of the accumulators obtained by the implementation of Code 5.10 

The peak in Figure 5.28(c) represents the location of the ellipses. In general, there is noise and the 

accumulator peak is spread out. This is for two main reasons. First, when the gradient direction is 

not accurate, then the line of votes does not pass precisely over the centre of the ellipse. This forces 

the peak to become wider with less height. Secondly, in order to avoid numerical instabilities, we 

need to select points that are well separated. However, this increases the probability that the points 

do not belong to the same ellipse, thus generating background noise in the accumulator. The 

accumulator in Figure Figure 5.28(d) shows the accumulator for the axis and rotation parameters.  

The figure shows a 2D slice of the 3D accumulator at the maximum point. 

 

 



Feature Extraction by Matching 

 247 

# Gather evidence for the ellipse location on the valid points 

accumulator = createImageF(width, height)  

numPoints = len(segments) 

 

# For a pair p1 = (x1,y1), p2=(x2,y2) 

for p1 in range(0, numPoints): 

    for p in range(0,pairsPerPoint): 

        p2 = randint(0, numPoints-1) 

         

        y1,x1 = (segments[p1])[0], (segments[p1])[1] 

        y2,x2 = (segments[p2])[0], (segments[p2])[1] 

        d = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)) 

        if d > deltaPointRange[0]:   

            angle1, angle2 = -angle[y1,x1], -angle[y2,x2] 

             

            # To void parallel edge directions 

            w = cos(angle1)*cos(angle2) + sin(angle1)*sin(angle2)  

            if w < 0.9: 

                xm, ym = (x1 + x2) / 2.0, (y1 + y2) / 2.0 

                m1, m2 = tan(angle1), tan(angle2) 

                A,B = y1-y2, x2-x1 

                C,D = m1+m2, m1*m2  

                M,N = A*C+2*B*D, 2*A+B*C 

                 

                norm = sqrt(M*M+N*N) 

                M,N = M/norm, N/norm 

                # Draw horizontal or vertical lines 

                if abs(M) < abs(N): 

                    m = float(M) / float(N) 

                    b1, b2 = y1-m1*x1, y2-m2*x2 

                    xIntersect = (b2-b1)/ (m1-m2) 

                    if xIntersect < xm:  

                        xi,xf = int(xm), min(int(xm + axisRange[1]), width-1) 

                    else:                

                        xi,xf = max(1,int(xm - axisRange[1])), int(xm) 

                    for x in range(xi,xf): 

                        y = m *(x - xm) + ym 

                        d1 = sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) 

                        if d1 > axisRange[0] and d1 < axisRange[1]: 

                            yInt = int(y) 

                            if yInt > 0 and yInt < height -1: 

                                weight = y - yInt 

                                accumulator[yInt,   x] += (1.0 - weight)  

                                accumulator[yInt+1, x] += weight  

                     

                else: 

                    m = float(N) / float(M) 

                    b1, b2 = x1-m1*y1, x2-m2*y2   

                    yIntersect = (b2-b1) / (m1-m2) 

                    if yIntersect < ym:  

                        yi,yf = int(ym), min(int(ym + axisRange[1]), height-1)  

                    else:                

                        yi,yf = max(1,int(ym - axisRange[1])), int(ym) 

                    for y in range(yi,yf): 

                        x = m *(y - ym) + xm 

                        d1 = sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) 

                        if d1 > axisRange[0] and d1 < axisRange[1]: 

                            xInt = int(x) 

                            if xInt > 0 and xInt < width -1: 

                                weight = x - xInt 

                                accumulator[y, xInt] += (1.0 - weight)  

                                accumulator[y, xInt+1] += weight      

Code 5.10  Implementation of the Parameter Space Reduction for the Hough Transform 

for Ellipses 
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(a) input edges (b) located ellipse 

  

(c) position accumulator  (d) axis accumulator 

Figure 5.28 Parameter Space Reduction for the Hough Transform for Ellipses 

 

5.5.6   Generalised Hough Transform (GHT) 

Many shapes are far more complex than lines, circles or ellipses. It is often possible to partition a 

complex shape into several geometric primitives, but this can lead to a highly complex data 

structure. In general, it is more convenient to extract the whole shape. This has motivated the 

development of techniques that can find arbitrary shapes using the evidence-gathering procedure 

of the HT. These techniques again give results equivalent to those delivered by matched template 

filtering, but with the computational advantage of the evidence gathering approach. An early 

approach offered only limited capability only for arbitrary shapes [Merlin75]. The full mapping is 

called the Generalised HT (GHT) [Ballard81] and can be used to locate arbitrary shapes with 

unknown position, size and orientation. The GHT can be formally defined by considering the 

duality of a curve. One possible implementation can be based on the discrete representation given 

by tabular functions. These two aspects are explained in the following two sections. 

5.5.6.1  Formal Definition of the GHT 

The formal analysis of the HT provides the route for generalising it to arbitrary shapes. We can start 

by generalising the definitions in Equation (5.43). In this way a model shape can be defined by a 

curve  
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For a circle, for example, we have that     cosrx  and     sinry . Any shape can be 

represented by following a more complex definition of   x  and  y . 

In general, we are interested in matching the model shape against a shape in an image. However, 

the shape in the image has a different location, orientation and scale. Originally the GHT defined a 

scale parameter in the x and y  directions, but due to computational complexity and practical 

relevance the use of a single scale has become much more popular. Analogous to Equation (5.35), 

we can define the image shape by considering translation, rotation and change of scale. Thus, the 

shape in the image can be defined as 

      Rbb ,,,  (5.74) 

where  00 , yxb   is the translation vector,   is a scale factor and  R  is a rotation matrix (as in 

Equation (5.33). Here we have included explicitly the parameters of the transformation as 

arguments, but to simplify the notation they will be omitted later. The shape of   ,,,b  depends 

on four parameters. Two parameters define the location b , plus the rotation and scale. It is important 

to notice that   does not define a free parameter, and only traces the curve.  

In order to define a mapping for the HT we can follow the approach used to obtain Equation 

(5.37). Thus, the location of the shape is given by 

       Rb  (5.75) 

Given a shape    and a set of parameters b ,   and , this equation defines the location of the 

shape. However, we do not know the shape    (since it depends on the parameters that we are 

looking for), but we only have a point in the curve. If we call  
yixii  ,  the point in the image, 

then 

     Rib  (5.76) 

defines a system with four unknowns and with as many equations as points in the image. In order 

to find the solution we can gather evidence by using a four dimensional accumulator space. For 

each potential value of b ,   and  , we trace a point spread function by considering all the values 

of  . That is, all the points in the curve   . 

In the GHT the gathering process is performed by adding an extra constraint to the system that 

allows us to match points in the image with points in the model shape. This constraint is based on 

gradient direction information and can be explained as follows. We said that ideally, we would like 

to use Equation (5.75) to gather evidence. For that we need to know the shape    and the model 

  , but we only know the discrete points 
i  and we have supposed that these are the same as the 

shape, i.e. that   i . Based on this assumption, we then consider all the potential points in the 

model shape,   . However, this is not necessary since we only need the point in the model,  

, that corresponds to the point in the shape,   . We cannot know the point in the shape,   , but 

we can compute some properties from the model and from the image. Then, we can check whether 

these properties are similar at the point in the model and at a point in the image. If they are indeed 

similar, the points might correspond: if they do we can gather evidence of the parameters of the 

shape. The GHT considers the gradient direction at the point as a feature. We can generalise 

Equation (5.47) and Equation (5.48) to define the gradient direction at a point in the arbitrary model. 

Thus, 
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x

y
 (5.77) 
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Thus Equation (5.75) is true only if the gradient direction at a point in the image matches the rotated 

gradient direction at a point in the (rotated) model, that is 

     ˆ
i  (5.78) 

where  ̂  is the angle at the point 
i . Note that according to this equation, gradient direction is 

independent of scale (in theory at least) and it changes in the same ratio as rotation. We can 

constrain Equation (5.76) to consider only the points    for which 

   0ˆ i  (5.79) 

That is, a point spread function for a given edge point 
i  is obtained by selecting a subset of points 

in    such that the edge direction at the image point rotated by   equals the gradient direction 

at the model point. For each point 
i  and selected point in    the point spread function is defined 

by the HT mapping in Equation (5.76). 

5.5.6.2  Polar definition 

 

Equation (5.76) defines the mapping of the HT in Cartesian form. That is, it defines the votes in  

the parameter space as a pair of co-ordinates  yx, . There is an alternative definition in polar form. 

The polar implementation is more common than the Cartesian form [Hecker94][Sonka94]. The 

advantage of the polar form is that it is easy to implement since changes in rotation and scale 

correspond to addition in the angle-magnitude representation. However, ensuring that the polar 

vector has the correct direction incurs more complexity.  

Equation (5.76) can be written in a form that combines rotation and scale as 

     ,b  (5.80) 

where        ,,,T

yx
 and where the combined rotation and scale is 
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yx
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x
 (5.81) 

This combination of rotation and scale defines a vector,   , , whose tangent angle and magnitude 

are given by 
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yx
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r  (5.82) 

The main idea here is that if we know the values for   and r , then we can gather evidence by 

considering Equation (5.80) in polar form. That is, 

   jb re     (5.83) 

Thus, we should focus on computing values for   and r . After some algebraic manipulation, we 

have that 

     r  (5.84) 

where 
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In this definition, we must include the constraint defined in Equation (5.79). That is, we gather 

evidence only when the gradient direction is the same. Notice that the square root in the definition 

of the magnitude in Equation (5.85) can have positive and negative values. The sign must be 

selected in a way that the vector has the correct direction. 

5.5.6.3  The GHT Technique 

 

Equations (5.76) and (5.83) define an HT mapping function for arbitrary shapes. The geometry of 

these equations is shown in Figure 5.29. Given an image point i  we have to find a displacement 

vector   , . When the vector is placed at 
i , then its end is at the point b . In the GHT jargon, 

this point called the reference point. The vector   ,  can be easily obtained as    R  or 

alternative as re . However, in order to evaluate these equations, we need to know the point  

. This is the crucial step in the evidence gathering process. Notice the interesting similarity between 

Figure 5.25(a), Figure 5.27(a) and Figure 5.29(a). This is not a coincidence, but Equation (5.62) is 

a particular case of Equation (5.75). 

The process of determining    centres on solving Equation (5.78). According to this equation, 

since we know 
i

ˆ , then we need to find the point    whose gradient direction is 0ˆ i . Then 

we must use    to obtain the displacement vector   , . The GHT pre-computes the solution 

of this problem and stores it in an array called the R-table. The R-table stores for each value of 
i

ˆ  

the vector   ,  for 0  and 1 . In polar form, the vectors are stored as a magnitude direction 

pair and in Cartesian form as a co-ordinate pair. 

 

 
 

(a) displacement vector (b) R-table 

Figure 5.29 Geometry of the GHT 

 

The possible range for 
i

ˆ  is between 2  and 2  radians. This range is split into N  equi-

spaced slots, or bins. These slots become rows of data in the R-table. The edge direction at each 

border point determines the appropriate row in the R-table. The length, r, and direction, , from the 

reference point is entered into a new column element, at that row, for each border point in the shape. 

In this manner, the N  rows of the R-table have elements related to the border information, elements 

for which there is no information contain null vectors. The length of each row is given by the 

number of edge points that have the edge direction corresponding to that row; the total number of 
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elements in the R-table equals the number of edge points above a chosen threshold. The structure 

of the R-table for N edge direction bins and m template border points is illustrated in Figure 5.29(b).  

The process of building the R-table is illustrated in Code 5.11. In this code, we implement the 

Cartesian definition given in Equation (5.76). According to this equation the displacement vector 

is given by 

𝛾(𝑟, 𝛼) = 𝑤(𝜃) + 𝑏 (5.86) 

The code stores the reference point 𝑏 in the variable refPoint. The edge points are stored in the 

edgePoints list that is created by iterating over all the pixels in the template image. The list 

rTable is built for the number of entries defined by the parameter numEntries. Each entry 

covers an angle range defined in the variable deltaAngle. Each edge point is added as an entry 

in the table according to the angle stored in angleTemplate. This angle is the direction of the 

edge and was obtained when edges are detected by the Canny operator.  

 
# Compute reference point in the template 

refPoint = [0,0] 

edgePoints = [] 

for x,y in itertools.product(range(0, widthTemplate), range(0, heightTemplate)): 

    if magnitudeTemplate[y,x] != 0: 

        refPoint[0] += y 

        refPoint[1] += x 

        edgePoints.append((y,x)) 

numPts = len(edgePoints) 

refPoint = [int(refPoint[0]/numPts),int(refPoint[1]/numPts)] 

 

# Build Rtable as a list of lists 

rTable = [[] for entryIndex in range(numEntries)] 

deltaAngle = 2.0 * pi / (numEntries - 1.0) 

for p in range(0, numPts): 

    y, x = (edgePoints[p])[0], (edgePoints[p])[1] 

     

    # The angle is in the interval -pi,+pi 

    ang = angleTemplate[y,x] + pi 

    entryIndex = int(ang/deltaAngle) 

    entry = rTable[entryIndex] 

    entry.append((y-refPoint[0], x-refPoint[1])) 

Code 5.11  Constructing the R-Table 

 

Code 5.12 shows the implementation of the gathering process of the GHT by using the Cartesian 

definition in Equation (5.76). We apply the Canny edge detection operator to the input image and 

the result is stored in the arrays magnitude and angle.  The magnitude value is used to 

determine if a pixel is an edge and the angle is used to locate an entry in the R-Table.  The 

entryIndex defines the index on the table and the row variable is a list that contains the table’s 

entry. Each entry in the row increases a cell in the accumulator. The maximum number of votes 

occurs at the location of the original reference point. After all edge points have been inspected, the 

location of the shape is given by the maximum of the accumulator array. 

Note that if we want to try other values for rotation and scale, then it is necessary to compute a 

table   ,  for all potential values. However, this can be avoided by considering that   ,  can 

be computed from  0,1 . That is, if we want to accumulate evidence for   , , then we use the 

entry indexed by i
ˆ  and we rotate and scale the vector  0,1 . That is,  

          
          



cos0,1sin0,1,

sin0,1cos0,1,

yxy

yxx
 (5.87) 
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In the case of the polar form, the angle and magnitude need to be defined according to Equation 

(5.84) . 

 
# Gather evidence of the template in the image 

accumulator = createImageF(width, height) 

maxSegmentLenght = 0 

for x,y in itertools.product(range(0, width), range(0, height)): 

    if magnitude[y,x] != 0: 

        # The angle is in the interval -pi,+pi 

        ang = angle[y,x] + pi 

        entryIndex = int(ang/deltaAngle) 

        row = rTable[entryIndex] 

        numPts = len(row) 

        for p in range(0, numPts): 

            x0, y0 = x - (row[p])[1], y - (row[p])[0]  

            if y0>0 and x0>0 and y0<height and x0<width:  

                accumulator[y0][x0] += 1 

Code 5.12  Implementing the GHT 

 

The application of the GHT to detect an arbitrary shape with unknown translation is illustrated 

in Figure 5.30. We constructed an R-table from the template shown in Figure 5.30(a). The table 

contains 180 rows. The accumulator in Figure 5.30(d) was obtained by applying the GHT to the 

image in Figure 5.30(b). Since the table was obtained from a shape with the same scale and rotation 

than the primitive in the image, then the GHT produces an accumulator with a clear peak at the 

centre of mass of the shape. The edges used to gather evidence are shown in Figure 5.30(c). 

Although the example in Figure 5.30 shows that the GHT is an effective method for shape 

extraction, there are several inherent difficulties in its formulation [Grimson90][Aguado00b]. The 

most evident problem is that the table does not provide an accurate representation when objects are 

scaled and translated. This is because the table implicitly assumes that the curve is represented in 

discrete form. Thus, the GHT maps a discrete form into a discrete parameter space. Additionally, 

the transformation of scale and rotation can induce other discretisation errors. This is because when 

discrete images are mapped to be larger, or when they are rotated, loci which are unbroken sets of 

points rarely map to unbroken sets in the new image. Another important problem is the excessive 

computations required by the four dimensional parameter space. This makes the technique 

impractical. Also, the GHT is clearly dependent on the accuracy of directional information. By 

these factors, the results provided by the GHT can become less reliable. A solution is to use of an 

analytic form instead of a table [Aguado98]. This avoids discretisation errors and makes the 

technique more reliable. This also allows the extension to affine or other transformations. However, 

this technique requires solving for the point    in an analytic way increasing the computational 

load. A solution is to reduce the number of points by considering characteristics points defined as 

points of high curvature. However this still requires the use of a four dimensional accumulator. An 

alternative to reduce this computational load is to include the concept of invariance in the GHT 

mapping. 
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(a) template (b) image 

  

(c) edges (d) template location 

Figure 5.30 Example of the GHT 

 

5.5.6.4  Invariant GHT 

The problem with the GHT (and other extensions of the HT) is that they are very general. That is, 

the HT gathers evidence for a single point in the image. However, a point on its own provides little 

information. Thus, it is necessary to consider a large parameter space to cover all the potential 

shapes defined by a given image point. The GHT improves evidence gathering by considering a 

point and its gradient direction. However, since gradient direction changes with rotation, then the 

evidence gathering is improved in terms of noise handling, but little is done about computational 

complexity.  

In order to reduce computational complexity of the GHT, we can consider replacing the gradient 

direction by another feature. That is, by a feature that is not affected by rotation. Let us explain this 

idea in more detail. The main aim of the constraint in Equation (5.79), is to include gradient 

direction to reduce the number of votes in the accumulator by identifying a point   . Once this 

point is known, then we obtain the displacement vector   , . However, for each value of rotation, 

we have a different point in   . Now let us replace that constraint in Equation (5.78) by a 

constraint of the form 

      QQ i
 (5.88) 

The function Q  is said to be invariant and it computes a feature at the point. This feature can be, 

for example, the colour of the point, or any other property that does not change in the model and in 

the image. By considering Equation (5.88), Equation (5.79) is redefined as  

      0 QQ i
 (5.89) 
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That is, instead of searching for a point with the same gradient direction, we will search for the 

point with the same invariant feature. The advantage is that this feature will not change with rotation 

or scale, so we only require a 2D space to locate the shape. The definition of Q  depends on the 

application and the type of transformation. The most general invariant properties can be obtained 

by considering geometric definitions. In the case of rotation and scale changes (i.e., similarity 

transformations) the fundamental invariant property is given by the concept of angle.  

An angle is defined by three points and its value remains unchanged when it is rotated and scaled. 

Thus, if we associate to each edge point 
i  a set of other two points  

Tj  , , we can compute a 

geometric feature that is invariant to similarity transformations. That is, 

  
yjyixjxi

yjxiyixj

iQ








  (5.90) 

where xn  and yn are the x and the  y coordinates of point n. Equation (5.90) defines the tangent of 

the angle at the point T . In general, we can define the points  
Tj  ,  in different ways. An 

alternative geometric arrangement is shown in Figure 5.31(a). Given the points 
i  and a fixed angle 

 , then we determine the point j  such that the angle between the tangent line at 
i  and the line 

that joins the points is  . The third point is defined by the intersection of the tangent lines at 
i  

and j . The tangent of the angle   is defined by Equation (5.90). This can be expressed in terms 

of the points and its gradient directions as  

  
ji

ji

i





1
Q  (5.91) 

We can replace the gradient angle in the R-table, by the angle   whose tangent is defined by 

Equation (5.91). The form of the new invariant table is shown in Figure 5.31(c). Since the angle   

does not change with rotation or change of scale, then we do not need to change the index for each 

potential rotation and scale. However, the displacement vectors changes according to rotation and 

scale (i.e., Equation (5.87)) that. Thus, if we want an invariant formulation, we must also change 

the definition of the position vector. 

 

 
 

 

 

(a) displacement vector (b) angle definition (c) invariant R-table 

Figure 5.31 Geometry of the Invariant GHT 

 

In order to locate the reference point b  from an entry on the table, we can generalise the ideas 

presented in Figure 27(a) and Figure 5.29(a). Figure 5.31(b) shows this generalization. As in the 

case of the circle and ellipse, we can locate the centre of a shape by considering a line of votes that 
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passes through the centre point b . This line was determined for the circle and ellipse by the angle 

i  . In order to use it in general shapes we will need do two things. First, we will find an invariant 

definition of this value. Secondly, we will need to include it on the GHT table. 

We can develop Equation (5.75) as 

   

   

 

 













































y

x

y

x

yi

xi

cossin

sincos

0

0
 (5.92) 

Thus, Equation (5.62) generalises to 

      
      







 

x

y

x

y

xi

yi

i
sincos

cossin

0

0
 (5.93) 

By some algebraic manipulation, we have that 

    tani
 (5.94) 

where 

 
 
 



x

y
 (5.95) 

In order to define 
i   we can consider the tangent angle at the point 

i . By considering the 

derivative of Equation (5.74) we have that 

      
      




x

y
i

sincos

cossin
 (5.96) 

Thus, 

   tani
 (5.97) 

where 

 
 
 



x

y
 (5.98) 

By considering Equation (5.94) and Equation (5.96) we define 

 
ii k   ˆˆ  (5.99) 

The important point in this definition is that the value of k  is invariant to rotation. Thus, if we use 

this value in combination with the tangent at a point we can have an invariant characterisation. In 

order to see that k  is invariant, we solve it for Equation (5.99). That is, 

 
iik   ˆˆ  (5.100) 

Thus, 

  k  (5.101) 

That is, 

 k  (5.102) 

That is independent of rotation. The definition of k  has a simple geometric interpretation illustrated 

in Figure 5.25 Geometry of the Angle of the First and Second Directional Derivatives(b).  
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In order to obtain an invariant GHT, it is necessary to know for each point 
i , the corresponding 

point    and then compute the value of 
i  . Then evidence can be gathered by the line in Equation 

(5.93). That is, 

   yixii xy   00  (5.103) 

In order to compute 
i   we can obtain k  and then use Equation (5.101). In the standard tabular form 

the value of k  can be pre-computed and stored as function of the angle  . 

 
# Find the pairs of points in the template according to alpha angle 

pairPoints = [] 

numPts = len(edgePoints) 

for p in range(0, numPts): 

    y1, x1 = (edgePoints[p])[0], (edgePoints[p])[1] 

    # We are looking for two points along the line with slope m 

    m = tan(angleTemplate[y1,x1] - alpha) 

    if m>-1 and m<1: 

        if x1 < refPoint[1]: xi, xf, step = x1 + minimaDistPoints,widthTemplate, 1 

        else: xi, xf, step = x1 - minimaDistPoints, 0, -1 

        for x2 in range(xi, xf, step): 

            y2 = int(y1 - m * (x2 - x1)) 

            if y2 > 0 and y2 < heightTemplate and magnitudeTemplate[y2,x2] != 0: 

                pairPoints.append((y2,x2,y1,x1)) 

                break         

    else: 

        m = 1.0/m 

        if y1 < refPoint[0]: yi, yf, step = y1 + minimaDistPoints,heightTemplate, 1 

        else: yi, yf, step = y1 - minimaDistPoints, 0, -1 

        for y2 in range(yi, yf, step): 

            x2 = int(x1 - m * (y2 - y1)) 

            if x2 > 0 and x2 < widthTemplate and magnitudeTemplate[y2,x2] != 0: 

                pairPoints.append((y2,x2,y1,x1)) 

                break     

                  

# Build table (k,c) from each pair of points  

rTable = [[] for entryIndex in range(numEntries)]      

deltaAngle = pi / (numEntries - 1.0)   

numPairs = len(pairPoints) 

for pair in range(0, numPairs): 

    y2, x2 = (pairPoints[pair])[0], (pairPoints[pair])[1] 

    y1, x1 = (pairPoints[pair])[2], (pairPoints[pair])[3] 

    # Compute beta     

    phi1, phi2 = tan(-angleTemplate[y1,x1]), tan(-angleTemplate[y2,x2]) 

 

    if 1.0+phi1*phi2 != 0: beta = atan((phi1-phi2)/(1.0+phi1*phi2)) 

    else:                  beta=1.57 

 

    # Compute k 

    if x1- refPoint[1] !=0: m = atan(-float(y1-refPoint[0])/(x1-refPoint[1])) 

    else:                   m =1.57 

 

    k = angleTemplate[y1,x1] - m 

    # Scale 

    distCentre = sqrt((y1-refPoint[0])*(y1-refPoint[0]) +                        \ 

                      (x1-refPoint[1])*(x1-refPoint[1])) 

    distPoints = sqrt((y2-y1)*(y2-y1) + (x2-x1)*(x2-x1)) 

    c = distCentre/distPoints 

    # Insert in the table. The angle is in the interval -pi/2 to pi/2 

    entryIndex = int((beta+(pi/2.0))/deltaAngle) 

    entry = rTable[entryIndex] 

    entry.append((k,c)) 

Code 5.13  Constructing the Invariant R-Table 
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Code 5.13 illustrates the implementation for obtaining the invariant R-Table. This code searches 

for two points along the line defined by the value of  . In the code alpha is set to 𝜋 2⁄  . Each 

element of the table stores a single value computed according to Equation (5.100). The more 

cumbersome part of the code is to search for the point j . We search in two directions from 
i  

and we stop once an edge point has been located. This search is performed by tracing a line. The 

trace is dependent on the slope. When the slope is between -1 and +1 we then determine a value of 

y  for each value of x , otherwise we determine a value of x  for each value of y . The table is 

constructed by considering each pair of points. The value beta is obtained according to Equation 

(5.89). The value k by following Equation (5.102). The scale 𝑐 is simply the ratio between the 

distance of the first point to the reference point and the distance between the points. The value 

beta is then used to find the index in the table where to insert the pair (𝑘, 𝑐). 

Code 5.14 illustrates the evidence gathering process according to Equation (5.103). The first part 

of the process is to find for each edge point (𝑥1, 𝑦1) all the points along the line defined by Equation 

(5.94). This process is similar to the first part of Code 5.13 and the results are stored in the list 

secondPoints. Each point (𝑥1, 𝑦1) is pared with each point in the secondPoints list to 

define the pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2). For each pair we can compute a value beta according to 

Equation (5.91). This defines an entry on the table. The data (𝑘, 𝑐) is recovered from the table and 

it is used to compute the slope of the angle defined in Equation (5.99). The slope of the line is 

obtained from 𝑘 and the distance between the point and the centre is determined by 𝑐. The 

accumulator is then incremented by a small segment of three pixels in the location of the reference 

point. We use a three pixels segment to account for errors in the computation of the gradient, the 

discretisation of the table and the discretisation of the accumulator. We should expect the location 

of the centre to be close but not exactly at the position obtained from the table values. The increase 

in the accumulator includes a weighting obtained by the distance to the expected reference point 

position. 

Figure 5.32 shows an example of the accumulator obtained by the implementation of Code 5.13. 

Figure 5.32(a) shows the template used in this example. This template was used to construct the R-

Table in Code 5.13. The R-Table was used to accumulate evidence when searching for the template 

in the image in Figure 5.32(b). Figure 5.32(d) shows the result of the evidence gathering process. 

We can observe a peak in the location of the object. However, this accumulator contains some 

noise. The noise is produced since rotation and scale change the value of the computed gradient. 

Thus, the line of votes is only approximated. Another problem is that pairs of points 
i  and j  

might not be found in an image, thus the technique is more sensitive to occlusion and noise than 

the GHT. 
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# Gather evidence   

numPts = len(secondPoints) > 0 

for ptIndex in range(0, numPts):  

    secondPoint = secondPoints[ptIndex]    

    y2, x2 = secondPoint[0], secondPoint[1] 

    distPoints = sqrt((y2-y1)*(y2-y1) + (x2-x1)*(x2-x1)) 

 

    # Compute beta     

    phi1, phi2 = tan(-angle[y1,x1]), tan(-angle[y2,x2]) 

    if 1.0+phi1*phi2 != 0: 

        beta = atan((phi1-phi2)/(1.0+phi1*phi2)) 

    else: 

        beta=1.57 

    # Find entry in table 

    entryIndex = int((beta+(pi/2.0))/deltaAngle) 

     

    row = rTable[entryIndex] 

    numEntriesinRow = len(row) 

 

    for kIndex in range(0, numEntriesinRow): 

        k, c = (row[kIndex])[0], (row[kIndex])[1] 

        distCentre = c * distPoints 

        m = tan(angle[y1,x1] - k)                    

        if m>-1 and m<1: 

            for x in range(0, width): 

                y = int(y1 - m * (x - x1)) 

                d = sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) 

                if y > 0 and y < height and abs(d-distCentre) < 3: 

                    accumulator[y,x] += 3.0 - abs(d-distCentre) 

        else: 

            m = 1.0/m 

            for y in range(0, height): 

                x = int(x1 - m * (y - y1)) 

                d = sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) 

                if x > 0 and x < width and abs(d-distCentre) < 3: 

                    accumulator[y,x] += 3.0 - abs(d-distCentre) 

Code 5.14  Implementating the Invariant GHT 

 

 

 

 

(a) template (b) image 
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(c) edges (d) template location 

Figure 5.32 Applying the Invariant GHT 

 

5.5.7   Other Extensions to the HT 

The motivation for extending the HT is clear: keep the performance, but improve the speed. There 

are other approaches to reduce the computational load of the HT. These approaches aim to improve 

speed and reduce memory focusing on smaller regions of the accumulator space. These approaches 

have included: the Fast HT [Li86] which uses successively splits the accumulator space into 

quadrants and continues to study the quadrant with most evidence; the Adaptive HT [Illingworth87] 

which uses a fixed accumulator size to iteratively focus onto potential maxima in the accumulator 

space; the Randomised HT [Xu90] and the Probabilistic HT [Kälviäinen95] which use a random 

search of the accumulator space; and other pyramidal techniques. One main problem with 

techniques which do not search the full accumulator space, but a reduced version to save speed, is 

that the wrong shape can be extracted [Princen89], a problem known as phantom shape location. 

These approaches can also be used (with some variation) to improve speed of performance in 

template matching. There have been many approaches aimed to improve performance of the HT 

and of the GHT.  

There has been a comparative study on the GHT (including efficiency) [Kassim99] and 

alternative approaches to the GHT include two Fuzzy HTs: [Philip91] which [Sonka94] includes 

uncertainty of the perimeter points within a GHT structure and [Han94] which approximately fits a 

shape but which requires application-specific specification of a fuzzy membership function. There 

have been two major reviews of the state of research in the HT [Illingworth88] [Leavers93] (but 

they are rather dated now) and a textbook [Leavers92] which cover many of these topics. The 

analytic approaches to improving the HTs' performance use mathematical analysis to reduce size, 

and more importantly dimensionality, of the accumulator space. This concurrently improves speed. 

A review of HT based techniques for circle extraction [Yuen90] covered some of the most popular 

techniques available at the time. 

 

5.6  Further Reading 

 

It is worth noting that research has focussed on shape extraction by combination of low-level 

features, Section 5.4, rather than on HT based approaches. The advantages of the low-level feature 

approach are simplicity, in that the features exposed are generally less complex than the variants of 

the HT. There is also a putative advantage in speed, in that simpler approaches are invariably faster 

than those that are more complex. Any advantage in respect of performance in noise and occlusion 

is yet to be established. The HT approaches do not (or do not yet) include machine learning 

approaches whose potency is perhaps achieved by the techniques which use low level features. The 

use of machine learning also implies a need for training, but there is a need to generate some form 

of template for the HT or template approaches. An over-arching premise of this text is that there is 

no panacea and as such there is a selection of techniques as there are for feature extraction, and 

some of the major approaches have been covered in this Chapter. 

In terms of performance evaluation, it is worth noting the PASCAL Visual Object Classes 

(VOC) Challenge [Everingham10] which is a benchmark in visual object category recognition and 

detection. The PASCAL consortium http://host.robots.ox.ac.uk/pascal/VOC/ aims to provide 

standardised databases for object recognition; to provide a common set of tools for accessing and 

managing the database annotations; and to conduct challenges, which evaluate performance on 
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object class recognition. This provides evaluation data and mechanisms and thus describing many 

advances in recognising objects from a number of visual object classes in realistic scenes. 

The majority of further reading in finding shapes concerns papers, many of which have already 

been referenced, especially in the newer techniques. An excellent survey of the techniques used for 

feature extraction (including template matching, deformable templates etc.) can be found in 

[Trier96]. A recent survey of the HT techniques can be found in [Mukhopadhyay15]. Few of the 

textbooks devote much space to shape extraction except Shape Classification and Analysis 

[Costa09] and Template Matching Techniques in Computer Vision [Brunelli09], sometimes 

dismissing it in a couple of pages. This rather contrasts with the volume of research there has been 

in this area, and the Hough transform finds increasing application as computational power continues 

to increase (and storage cost reduces). Other techniques use a similar evidence gathering process to 

the HT. These techniques are referred to as Geometric Hashing and Clustering Techniques 

[Lamdan88] [Stockman87]. In contrast with the HT, these techniques do not define an analytic 

mapping, but they gather evidence by grouping a set of features computed from the image and from 

the model.  

There are deep learning replacing interest point detectors [Zheng18] and deep learning based 

object detectors [Ren15, Redmon16]. There are also newer approaches that perform segmentation 

based on evidence gathering, e.g. Hough-CNN [Milletari117], which perhaps can handle better the 

noise in medical images. Time will tell on these new approaches, and some are described in Chapter 

12. Essentially, this Chapter has focussed on shapes, which can in some form have a fixed 

appearance whether it is exposed by a template, a set of keypoints or by a description of local 

properties. In order to extend the approaches to shapes with a less constrained description, and 

rather than describe such shapes by constructing a library of their possible appearances, we require 

techniques for deformable shape analysis, as we shall find in the next Chapter. 
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